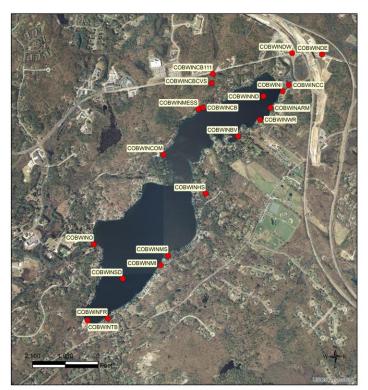


Volunteer Lake Assessment Program Individual Lake Reports COBBETTS POND, WINDHAM, NH

MORPHOMETRIC DATA

TROPHIC CLASSIFICATION

KNOWN EXOTIC SPECIES


Intern Herne Brank			Incline		KING WIT EXCITE OF ECIED			
Watershed Area (Ac.):	2,048	Max. Depth (m):	19.2	Flushing Rate (yr ¹)	0.4	Year	Trophic class	Variable Milfoil
Surface Area (Ac.):	345	Mean Depth (m):	5.2	P Retention Coef:	0.8	1986	MESOTROPHIC	
Shore Length (m):	7,400	Volume (m ³):	7,208,000	Elevation (ft):	177	2003	EUTROPHIC	

The Waterbody Report Card tables are generated from the DRAFT 2020 305(b) report on the status of N.H. waters, and are based on data collected from 2010-2019. Detailed waterbody assessment and report card information can be found at <u>NHDES' Water Quality Assessment Website</u>.

Designated Use	Parameter	Categ	ory	Comments					
Aquatic Life	Phosphorus (Tot	al) Slight	ly Bad	Data exce small mar	ed water quality standards or thresholds for a given parameter by a gin.				
	рН	Slight	ly Bad		odically exceed water quality standards or thresholds for a given r by a small margin.				
	Oxygen, Dissolve	ed Good		Sampling paramete	data commonly meet water quality standards or thresholds for this r.				
	Dissolved oxyger satura	n Cautio	onary	Limited d standards paramete	ata for this parameter predicts exceedance of water quality or thresholds; however more data are necessary to fully assess the r.				
	Chlorophyll-a	Slight	Slightly Bad		Data exceed water quality standards or thresholds for a given parameter by a small margin.				
Primary Contact Recreation	Escherichia coli	Good	Good		Sampling data commonly meet water quality standards or thresholds for this parameter.				
	Cyanobacteria hepatoto	Slight	Slightly Bad		Cyanobacteria bloom(s).				
	Chlorophyll-a	Very (Very Good		All sampling data meet water quality standards or thresholds for this parameter.				
BEACH PRIMARY CONTA	CT ASSESSMENT STATUS								
COBBETTS DOND - DUNKAN BEACH		Escherichia	No Dat	· ^	No data for this parameter				

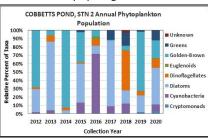
COBBETTS POND - DUNKAN BEACH	Escherichia coli	No Data	No data for this parameter.
COBBETTS POND - TOWN BEACH	Escherichia coli		Data periodically exceed water quality standards or thresholds for this parameter by a large margin.
COBBETTS POND - TOWN BEACH	Cyanobacteri a	Slightly Bad	Cyanobacteria bloom(s).

VLAP SAMPLE STATION MAP: This map depicts the location of routine sampling stations discussed on page two of the report.

COBBETTS POND WINDHAM VOLUNTEER LAKE ASSESSMENT PROGRAM

STATIONID	STATION NAME					
COBWINCB	CONNIES BROOK					
COBWINFR	FOSSA RD INLET					
COBWINI	MAIN INLET CASTLETON BROOK					
COBWINND	STATION 2					
COBWINO	OUTLET					
COBWINSD	STATION 1 DEEP SPOT					
COBWINARM	ARMSTRONG					
COBWINCOM	COMMUNITY BEACH					
COBWINCB111	CONNIES BROOK AT 111					
COBWINBV	BELLA VISTA					
COBWINMS	MUELLER STREAM					
COBWINTB	TOWN BEACH					
COBWINMI	MONSON INLET					
COBWINMESS	MESS					
COBWINCC	CASTLETON CULVERT					
COBWINDW	DINSMORE WEST					
COBWINWR	WALKEY RD					
COBWINHS	HORSESHOE RD					
COBWINDE	DINSMORE EAST					
COBWINCBCVS	CONNIES BROOK AT CVS					

Source: The data layers are derived from NHDES data and are under constant revision. NHDES is not responsible for the use or interpretation of this information. Not intended for legal use NHDES Materiated Management Running.

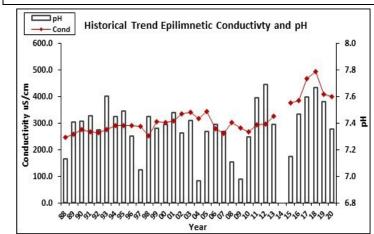

Volunteer Lake Assessment Program Individual Lake Reports Cobbetts Pond, Stn. 2, Windham 2020 Data Summary

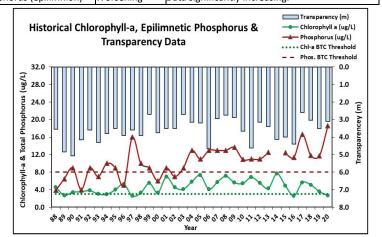
Recommended Actions: Great job sampling in 2020! Algal (chlorophyll) growth was within a low range and representative of oligotrophic conditions, however phosphorus levels remain elevated and have significantly increased. Phytoplankton population data reveals a potential shift from dominance of Golden-Brown and Diatom algae to Cyanobacteria and Dinoflagellates. This may be influenced by the presence of Asian Clams which are filter feeders and may not filter larger sized Cyanobacteria cells as well as increases in salt concentrations that tend to favor Dinoflagellates, a common marine species. Watch for any surface scums or blooms of and report to NHDES Harmful Algal Bloom Program. Continue efforts to manage stormwater runoff, nutrient and chloride loading to the pond. Continue enhanced monitoring for conductivity and chloride to assess effectiveness of the low salt zone as well as to help pinpoint other problematic sites. Consider development of a management plan addressing chloride as a significant pollutant in the watershed as this could help identify and quantify different sources contributing to the load such as septic systems and water softeners. Keep up the great work!

Observations (Refer to Table 1 and Historical Deep Spot Data Graphics)

- Chlorophyll-a: Chlorophyll level was low in June and remained stable in August. Average chlorophyll level decreased slightly from 2019 and was less than the state median and the threshold for oligotrophic lakes. Historical trend analysis indicates relatively stable chlorophyll levels since monitoring began.
- Conductivity/Chloride: Deep spot and tributary conductivity and chloride levels remained elevated and much greater than the state medians. Connie's Bk. at CVS, Castleton Culvert and Main Inlet chloride levels exceeded the state chronic chloride standard on at least one sampling event. Tributary chloride levels generally increased over 2019 while deep spot chloride levels generally decreased. Historical trend analysis indicates significantly increasing (worsening) epilimnetic (upper water layer) conductivity levels since monitoring began, particularly since 2015.
- Color: Apparent color measured in the epilimnion indicates the water was lightly tea colored, or light brown, in June and was clear with very little tea coloring in August.
- Total Phosphorus: Epilimnetic phosphorus level was greatly elevated in June and decreased to a moderate level in August. Average epilimnetic phosphorus increased greatly from 2019, was much greater than the state median and threshold for oligotrophic lakes, and was the highest measured since monitoring began. Historical trend analysis indicates significantly increasing (worsening) epilimnetic phosphorus levels since monitoring began. Metalimnetic (middle water layer) phosphorus level was stable and within a moderate level. Hypolimnetic (lower water level) phosphorus level was slightly elevated in June and greatly elevated in August likely due to release of phosphorus from bottom sediments under anoxic (no dissolved oxygen) conditions. Armstrong, Castleton Culvert, Community Beach, Connie's Bk. at 111, Connie's Bk. at CVS, and Main Inlet phosphorus levels fluctuated within low to moderate range. Dinsmore West and Mess phosphorus levels were greatly elevated and phosphorus levels at Mess have generally been elevated since 2015.
- Transparency: Transparency measured with (VS) and without (NVS) the viewscope was below average (worse) in June and then increased (improved) in August by approx. 1.5 meters. Average NVS transparency decreased slightly from 2019 and was slightly less than the state median. Historical trend analysis indicates significantly decreasing (worsening) transparency since monitoring began.
- Turbidity: Deep spot turbidity levels fluctuated within a low to moderate range and decreased from 2019. Armstrong, Community Beach and Connie's Bk. turbidity levels were low. Connie's Bk. at 111, Connie's Bk. at CVS and Main Inlet turbidity levels were slightly elevated and lab data noted low levels of sediment and/or organic matter in the samples. Castleton Culvert turbidity level was greatly elevated in August and is noted in the sample.
- **pH:** Deep spot, Castleton Culvert, Community Beach, Connie's Bk. at all stations, Dinsmore West, and Main Inlet pH levels were within the desirable range 6.5-8.0 units. Historical trend analysis indicates stable epilimnetic pH levels since monitoring began. Armstrong and Mess pH levels were slightly acidic and less than desirable.

Station Name		Table 1. 2020 Average Water Quality Data for COBBETTS POND, STN. 2								
	Alk. (mg/L)	Chlor-a (ug/L)	Chloride (mg/L)	Color (pcu)	Cond. (us/cm)	Total P (ug/L)	Trans	s. (m)	Turb. (ntu)	pН
							NVS	VS		
Epilimnion	35	2.7	101	30	399.0	19	3.10	3.62	0.82	7.36
Metalimnion			98		374.5	14			0.95	7.10
Hypolimnion			102		420.5	52			1.44	7.38
Armstrong			147		538.0	15			0.75	5.96
Castleton Culvert			216		1026.0	16			17.52	6.45
Community Beach					391.0	17			0.74	7.68
Connie's Brook			194		789.0	8			0.39	7.39
Connie's Brook at 111			144		598.0	10			3.65	6.83
Connie's Brook at CVS			387		1623.0	11			5.02	7.69
Dinsmore West			176		901.5	95			3.76	7.55
Main Inlet Castleton Bk.			232		1080.0	11			3.26	6.87
Mess					44.2	67			1.35	5.85




for specific parameters. Results exceeding criteria are considered a water quality violation. Chloride: > 230 mg/L (chronic) E. coli: > 88 cts/100 mL - public beach E. coli: > 406 cts/100 mL – surface waters Turbidity: > 10 NTU above natural level pH: between 6.5-8.0 (unless naturally occurring) NH Median Values: Median values for specific parameters generated from historic lake monitoring data. Alkalinity: 4.5 mg/L Chlorophyll-a: 4.39 ug/L Conductivity: 42.3 uS/cm Chloride: 5 mg/L Total Phosphorus: 11 ug/L Transparency: 3.3 m **pH:** 6.6

NH Water Quality Standards: Numeric criteria

Historical Water Quality Trend Analysis

Parameter	Trend	Explanation	Parameter	Trend	Explanation
Conductivity	Worsening	Data significantly increasing.	Chlorophyll-a	Stable	Trend not significant; data moderately variable.
pH (epilimnion)	Stable	Trend not significant; data show low variability.	Transparency	Worsening	Data significantly decreasing.
			Phosphorus (epilimnion)	Worsening	Data significantly increasing.

This report was generated by the NHDES Volunteer Lake Assessment Program (VLAP). For more information contact VLAP at (603) 271-2658 or sara.steiner@des.nh.gov