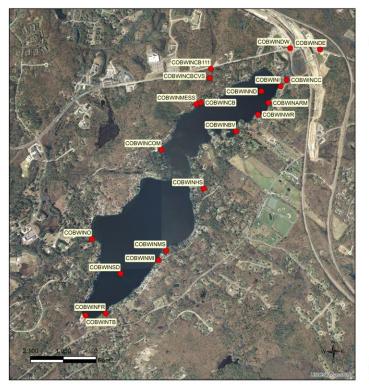


Volunteer Lake Assessment Program Individual Lake Reports COBBETTS POND, WINDHAM, NH


MORPHOMETRIC DATA							CLASSIFICATION	KNOWN EXOTIC SPECIES
Watershed Area (Ac.):	2,048	Max. Depth (m):	19.2	Flushing Rate (yr1)	0.4	Year	Trophic class	Variable Milfoil
Surface Area (Ac.):	345	Mean Depth (m):	5.2	P Retention Coef:	0.8	1986	MESOTROPHIC	
Shore Length (m):	7,400	Volume (m³):	7,208,000	Elevation (ft):	177	2003	EUTROPHIC	

Designated Use	Parameter	Category	Comments
Aquatic Life	Phosphorus (Total)	Slightly Bad	Data exceed water quality standards or thresholds for a given parameter by a small margin.
	рН	Slightly Bad	Data periodically exceed water quality standards or thresholds for a given parameter by a small margin.
	Oxygen, Dissolved	Good	Sampling data commonly meet water quality standards or thresholds for this parameter.
	Dissolved oxygen satura	Cautionary	Limited data for this parameter predicts exceedance of water quality standards or thresholds; however more data are necessary to fully assess the parameter.
	Chlorophyll-a	Slightly Bad	Data exceed water quality standards or thresholds for a given parameter by a small margin.
Primary Contact Recreation	Escherichia coli	Good	Sampling data commonly meet water quality standards or thresholds for this parameter.
	Cyanobacteria hepatoto	Slightly Bad	Cyanobacteria bloom(s).
	Chlorophyll-a	Very Good	All sampling data meet water quality standards or thresholds for this parameter.

BEACH PRIMARY CONTACT ASSESSMENT STATUS

COBBETTS POND - DUNKAN BEACH	Escherichia coli	No Data	No data for this parameter.						
COBBETTS POND - TOWN BEACH	Escherichia coli	Bad	Data periodically exceed water quality standards or thresholds for this parameter by a large margin.						
COBBETTS POND - TOWN BEACH	Cyanobacteri a	Slightly Bad	Cyanobacteria bloom(s).						

VLAP SAMPLE STATION MAP: This map depicts the location of routine sampling stations discussed on page two of the report.

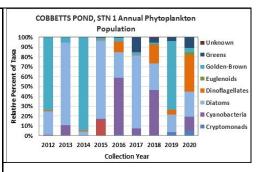
COBBETTS POND WINDHAM

VOLUNTEER LAKE ASSESSMENT PROGRAM

STATIONID	STATION NAME						
COBWINCB	CONNIES BROOK						
COBWINER	FOSSA RD INLET						
COBWINI	MAIN INLET CASTLETON BROOK						
COBWINND	STATION 2						
COBWINO	OUTLET						
COBWINSD	STATION 1 DEEP SPOT						
COBWINARM	ARMSTRONG						
COBWINCOM	COMMUNITY BEACH						
COBWINCB111	CONNIES BROOK AT 111						
COBWINBV	BELLA VISTA						
COBWINMS	MUELLER STREAM						
COBWINTB	TOWN BEACH						
COBWINMI	MONSON INLET						
COBWINMESS	MESS						
COBWINCC	CASTLETON CULVERT						
COBWINDW	DINSMORE WEST						
COBWINWR	WALKEY RD						
COBWINHS	HORSESHOE RD						
COBWINDE	DINSMORE EAST						
COBWINCBCVS	CONNIES BROOK AT CVS						

Source: The data layers are derived from NHDES data and are under constant revision. NHDES is not responsible for the use or interpretation of this information. Not intended for legal use NHDES Watershed Management Bureau

Volunteer Lake Assessment Program Individual Lake Reports Cobbetts Pond, Stn. 1, Windham 2020 Data Summary


Recommended Actions: Great job sampling in 2020! Algal (chlorophyll) growth remained within a low range and representative of oligotrophic conditions, however phosphorus levels remain elevated and above the threshold for oligotrophic lakes. Review of phytoplankton population reveals a potential shift from dominance of Golden-Brown and Diatom algae to Cyanobacteria and Dinoflagellates. This may be influenced by the presence of Asian Clams which are filter feeders and may not filter larger sized Cyanobacteria cells as well as increases in salt concentrations that tend to favor Dinoflagellates that are common marine species. Watch for any surface scums or blooms of Cyanobacteria and report to NHDES Harmful Algal Bloom Program. Continue efforts to manage stormwater runoff, nutrient and chloride loading to the pond. Continue enhanced monitoring for conductivity and chloride to assess effectiveness of the low salt zone as well as to help pinpoint other problematic sites. Consider development of a management plan addressing chloride as a significant pollutant in the watershed as this could help identify and quantify different sources contributing to the load such as septic systems and water softeners. Keep up the great work!

- Chlorophyll-a: Chlorophyll level was low in June and remained stable in August. Average chlorophyll level decreased from 2019 and was less than the state median and the threshold for oligotrophic lakes. Historical trend analysis indicates relatively stable chlorophyll levels since monitoring began.
- ♦ Conductivity/Chloride: Deep spot and tributary conductivity and chloride levels remained elevated and much greater than the state medians. Deep spot chloride levels decreased slightly from 2019 and were uniform throughout the water column. Historical trend analysis indicates significantly increasing (worsening) epilimnetic (upper water layer) conductivity levels since monitoring began and particularly since 2015. Chloride levels at Fossa Rd. Inlet approached the state chronic chloride standard in June. Historical
- Color: Apparent color measured in the epilimnion indicates the water was lightly tea colored, or light brown, and was
 darkest in June.
- ◆ Total Phosphorus: Epilimnetic (upper water layer) phosphorus levels were moderate in June and remained stable in August. Average epilimnetic phosphorus increased slightly from 2019 and was greater than the state median and the threshold for oligotrophic lakes. Historical trend analysis indicates significantly increasing (worsening) epilimnetic phosphorus levels since monitoring began. Metalimnetic (middle water layer) phosphorus levels fluctuated within a moderate range. Hypolimnetic (lower water layer), Fossa Rd. Inlet, Horseshoe Rd., and Town Beach phosphorus levels were elevated in June and decreased to a moderate range in August. Outlet phosphorus levels were elevated in June and decreased to a moderate range in August. Mueller Stream phosphorus levels were very low in June
- and August. Mueller Stream phosphorus levels were very low in June.

 Transparency: Transparency measured with (VS) and without (NVS) the viewscope was below average (worse) in June when water color was darker and then increased (improved) by two meters in August when water color was in the clear range. Average NVS transparency remained stable with 2019 and was approximately equal to the state median. Historical trend analysis indicates significantly decreasing (worsening) transparency since monitoring began.
- ♦ Turbidity: Deep spot turbidity levels were slightly higher in June but remained within a normal range for NH lakes. Fossa Rd. Inlet and Town Beach turbidity levels were greatly elevated in June and decreased to slightly elevated levels in August. Low flow conditions likely resulted in sediment and/or organic matter in samples. Horseshoe Rd., Mueller Stream and Outlet turbidity levels were within a low range.
- ♦ pH: Deep spot and tributary pH levels were within the desirable range 6.5-8.0 units. Historical trend analysis indicates stable epilimnetic pH levels since monitoring began.

Station Name	Ta	Table 1. 2020 Average Water Quality Data for COBBETTS POND, STN. 1								
	Alk. (mg/L)	Chlor-a (ug/L)	Chloride (mg/L)	Color (pcu)	Cond. (us/cm)	Total P (ug/L)	Trans. (m)		Turb. (ntu)	рН
							NVS	VS		
Epilimnion	34.8	2.62	97	35	398.0	13	3.25	3.70	0.86	7.52
Metalimnion			95		378.0	13			0.84	7.20
Hypolimnion			95		375.5	26			0.74	6.87
Fossa Rd. Inlet			166		602.0	27			7.62	7.30
Horseshoe Rd.			51		227.5	24			0.49	7.02
Mueller Stream			139		482.0	10			0.67	7.38
Outlet			89		363.5	29			1.07	6.89
Town Beach					322.0	26			4.28	7.21

NH Water Quality Standards: Numeric criteria for specific parameters. Results exceeding criteria are considered a water quality violation.

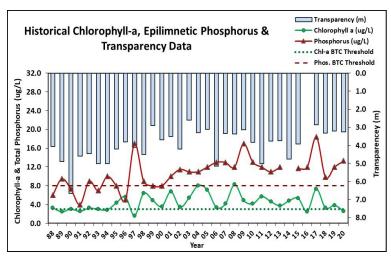
Chloride: > 230 mg/L (chronic)

E. coli: > 88 cts/100 mL – public beach
E. coli: > 406 cts/100 mL – surface waters

Turbidity: > 10 NTU above natural level **pH:** between 6.5-8.0 (unless naturally occurring)

NH Median Values: Median values for specific parameters generated from historic lake monitoring data.

Alkalinity: 4.5 mg/L Chlorophyll-a: 4.39 ug/L Conductivity: 42.3 uS/cm Chloride: 5 mg/L


Total Phosphorus: 11 ug/L Transparency: 3.3 m

pH: 6.6

Historical Water Quality Trend Analysis

Parameter	Trend	Explanation	Parameter	Trend	Explanation
Conductivity	Worsening	Data significantly increasing.	Chlorophyll-a	Stable	Trend not significant; data moderately variable.
pH (epilimnion)	Stable	Trend not significant; data show low variability.	Transparency	Worsening	Data significantly decreasing.
			Phosphorus (epilimnion)	Worsening	Data significantly increasing.

