New Hampshire Geological Survey New Hampshire Department of Environmental Services Stream Crossing Assessment Initiative Geomorphic and Aquatic Organism Passage Screening Tool Summary

The New Hampshire Geological Survey (NHGS), in partnership with the State Stream Crossing Steering Team, has employed a geomorphic compatibility and aquatic organism passage compatibility screening tool to score culverts for these two parameters. These tools are largely borrowed from those developed by the State of Vermont. However, NHGS, with the Steering Team, has made minor adjustments with the scoring algorithms. The purpose of this document is to provide the algorithms currently in use in New Hampshire, and ensure that the slight modifications that have been made are documented.

GEOMORPHIC COMPATIBILITY

The Geomorphic Compatibility score for a stream crossing represents the total sum of five (5) individual variables that are calculated based on collected stream crossing data parameters. The total score determines how the crossing fits into one of five compatibility categories that range from Fully Compatible to Fully Incompatible.

Ratio of Structure Width to Upstream Channel Widths

One key variable that factors into the final score is how undersized the culvert inlet is compared to the incoming stream channel. This is determined through the ratio of the structure inlet width relative to upstream channel width. Per the New Hampshire Stream Crossing Initiative Field Manual (assessment protocol), upstream of a culvert, the first bankfull width of the channel is collected far enough upstream of the crossing such that the measurements are taken outside of the influence of the structure. A total of three are collected, spaced ½ bankfull width apart. Once the upstream bankfull widths are collected, assessors proceed upstream for a total of 10 times the length of the first bankfull width or at least 100 feet from the inlet. The three remaining bankfull widths, which serve as the reference, are then spaced one bankfull width apart.

The ratio of structure width to upstream channel width is calculated by comparing the inlet structure width to the <u>average of the three upstream reference widths</u>. The rationale behind this calculation metric is to use bankfull widths that are as far upstream away from the culvert as possible, and thus, away from the area of direct influence from the crossing.

Input Variables

The variables serving as input to the total screen are as follows:

- Ratio of structure width to upstream channel widths (discussed above)
- Sediment continuity (upstream deposits and downstream scour)
- Structure slope versus channel slope, and break in valley slope
- Approach angle
- Bank armoring and erosion upstream/downstream

Each variable is scored on a scale of 0 to 5, with zero (0) representing the most problematic condition for a variable, and 5 representing the least concern. The thresholds are based upon those developed by Milone and MacBroom (2008), for the State of Vermont.

Individual Variable Scoring

The individual variable scores are determined in the following manner:

Score	% Bankfull	Sediment Continuity	Slope	Approach	Erosion and	
	Width			Angle	Armoring	
5	≥ 120	No upstream deposition	Structure slope	Naturally	No erosion or	
		or downstream bed scour	equal to channel	straight	armoring	
			slope, and no			
			slope			
4	100 < % <	Fither unstream	N/A	N/A	No erosion and	
-	120	deposition or		,,,	intact	
		downstream bed scour.			armoring, or	
		without upstream			low upstream	
		deposits taller than 0.5			or downstream	
		bankfull height or high			erosion	
		downstream banks			without	
					armoring	
3	75 ≤ % < 100	Either upstream	Structure slope	Mild bend	Low upstream	
		deposition or	equal channel		or downstream	
		downstream bed scour,	slope, with local		erosion with	
		with either upstream	break in valley		armoring	
		deposits taller than 0.5	slope			
		bankfull height or high				
2	F0 < 9/ < 7F	downstream banks	Structure clone	Channaliza	Low unstroom	
2	50≤%<75	donosition and	Structure slope	d straight	Low upstream	
		downstream hed scour	than channel	u straight	downstream	
		without unstream	slope and no		erosion	
		deposits taller than 0.5	break in vallev		crosion	
		bankfull height or high	slope			
		downstream banks				
1	30 ≤ % < 50	Both upstream	N/A	N/A	Severe	
		deposition and			upstream or	
		downstream bed scour,			downstream	
		with upstream deposits			erosion	
		taller than 0.5 bankfull				
		height or high				
		downstream banks				
0	< 30	Both upstream	Structure slope	Sharp bend	Severe	
		deposition and	nigher or lower		upstream and	
		with unstream denosite	chan channel		arosion or	
		taller than 0.5 hankfull	siope, with local		erusion, or failing	
		height and high	slone		armoring	
		downstream banks	Siope		upstream or	
					downstream	

Scoring and Compatibility Category Thresholds

The geomorphic compatibility categories are determined, based on the total summation of individual variable scores in the following manner:

Category Name	Score	Thresholds	Description	
Fully Compatible	20 <	N/A	These structures are fully compatible with river channel	
	Score		form and process, and are at a low risk of failure. Culvert	
	≤ 25		replacement is not expected over the lifetime of the	
			structure. When replaced, a structure similar to the	
			current one is recommended. Culverts that rank in this	
			category typically provide examples of the proper sizing	
			and construction at sites where replacements are	
			required to ensure compatibility with flow and sediment	
			transport processes.	
Mostly Compatible	15 <	N/A	These structures are mostly compatible with river	
	Score		channel form and process, and are at a low risk of	
	≤ 20		failure. Culvert replacement is not expected over the	
			lifetime of the structure. When replaced, minor design	
			adjustments are recommended to make the culvert fully	
			compatible with river form and process.	
Partially Compatible	10 <	N/A	These structures are either compatible with current form	
	Score		or process, but not both, with any compatibility only	
	≤ 15		likely in the short term. Culvert replacement may be	
			needed, given the moderate risk of failure during its	
			design lifetime. When replaced, a redesign of the culvert	
			installation is suggested to improve the compatibility of	
			the culvert with river form and process.	
Mostly Incompatible	5 <	% Bankfull	These structures are typically undersized for the river or	
	Score	Width +	stream channel that contains them, and/or are poorly	
	≤ 10	Approach	aligned with the channel form, creating a condition	
		Angle	where the structures are mostly incompatible with river	
		Score ≤ 2	form and process. As a result, these structures are at a	
			moderate to high risk of structural failure. When	
			replaced, a redesign of the culvert should be initiated to	
			improve the geomorphic compatibility, and is a factor to	
			be considered in long-term stream crossing replacement	
			planning.	
Fully Incompatible	0≤	% Bankfull	These structures are typically undersized for the river or	
	Score	Approach	stream channel that contains them, and/or are typically	
	≤ 5	Angle Score	poorly aligned with the upstream channel form, while	
		≤ 2 AND	also showing a reduced ability to pass sediment through	
		Sediment	the crossing and an increased risk for erosion. Crossings	
		Continuity +	ranking in this category are not compatible with river	
		Erosion and	form and process and are at a high risk of failure.	
		Armoring	Culverts ranking in this category should be prioritized for	
		scores ≤ 2	replacements to improve river process compatibility.	

AQUATIC ORGANISM PASSAGE (AOP) COMPATIBILITY

The AOP compatibility score is used to identify crossings that may not be capable of passing aquatic organisms from downstream to upstream. Within the New Hampshire State Stream Crossing Initiative, the Fish and Game Department has responsibility for this compatibility scoring algorithm. Based on input from Fish and Game, NHGS maintains the scoring code that implements criteria outlined below, and scores culverts for AOP compatibility upon completion of the QA/QC process for a batch of crossings, as performed by NHGS.

New Hampshire's implementation of the AOP Compatibility tool is largely derived from Milone and MacBroom (2009), who developed the tool for the State of Vermont. However, New Hampshire has slightly modified the scoring, by adding a variable for screening installed either at the culvert inlet or outlet. Any culvert that is assessed as having screening at the inlet or outlet is automatically assigned an AOP category of *No Passage*. This is noted in the scoring metric table below.

Based on the data collected, there are four categories for which a culvert that meets criteria can be assigned for AOP. They are as follows: *Full Passage Reduced Passage Passage Only for Adult Trout No Passage*

Variables	Full Passage	Reduced	Passage Only for		No Passage		
		Passage	Adult Trout				
Condition Statement	If All Are	lf Any					
	True	Are True					
Culvert outlet invert	At Grade OR	Cascade	Free Fall AND		Free Fall AND		
type	Backwatered						
Outlet drop (feet)	= 0		>0, <1 Foot OR		≥ 1 Foot OR		
Downstream pool			=	= Yes AND	= No	= Yes	
present			Yes		OR	AND	
Downstream pool				≥ 1	N/A	< 1 OR	
entrance depth / outlet							
drop							
Water depth in culvert					< 0.3	< 0.3 Feet	
at outlet (feet)							
# culverts at crossing	1	>1					
Structure opening	= None	≠ None					
partially obstructed							
Sediment throughout	Yes	No					
structure							
Screening at inlet or					Yes		
outlet*							

*If screening is present at the inlet or outlet, then category <u>cannot</u> be anything other than No AOP (Including Adult Salmonids).

References

Milone & MacBroom, Inc. 2008. *The Vermont Culvert Geomorphic Compatibility Screening Tool*. Prepared for Vermont Agency of Natural Resources, Department of Environmental Conservation, River Management Program. South Burlington, Vt.

Milone & MacBroom, Inc. 2009. *The Vermont Culvert Aquatic Organism Passage Screening Tool.* Prepared for Vermont Agency of Natural Resources, Department Fish and Wildlife. South Burlington, Vt.