

SUGAR RIVER TMDL STUDY

G. Constack

MARCH 1996

State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

6 Hazen Drive, P.O. Box 95, Concord, NH 03302-0095 603-271-3503 FAX 603-271-2867 TDD Access: Relay NH 1-800-735-2964

March 1, 1996

Edward J. Schmidt, P.E., Ph.D., Director Department of Environmental Services Water Supply & Pollution Control Division Hazen Drive Concord, New Hampshire 03301

Re: Total Maximum Daily Load Study

Dear. Dr. Schmidt:

Please find attached the Sugar River Total Maximum Daily Load Study. This report is being submitted in partial fulfillment of the FY95 EPA workplan.

Presently there are no violations of water quality standards in the Sugar River. However, when the City of Claremont approaches the design capacity of its wastewater treatment facility (WWTF), their existing NPDES permit limitations may have to be somewhat lower; that is, if the City continues to discharge to the Sugar River. Another option the City has is to explore the viability of discharging to the Connecticut River.

For the City's convenience, we have also provided modeling in the event another business wishes to occupy the now defunct Coy Paper site. In essence, it gives the City some idea of how a discharge at Coy Paper would impact their WWTF.

Cordially,

euman

Raymond P. Carter, P.E., Administrator Water Quality/Permits & Compliance Bureau

AIR RESOURCES DIV. 64 No. Main Street P.O. Box 2033 Concord, N.H. 03302-2033 Tel. 603-271-1370 FAX 603-271-1381 WASTE MANAGEMENT DIV. 6 Hazen Drive Concord, N.H. 03301 Tel. 603-271-2900 FAX 603-271-2456 WATER RESOURCES DIV. 64 No. Main Street P.O. Box 2008 Concord. N.H. 03302-2008 Tel. 603-271-3406 FAX 603-271-7894 WATER SUPPLY & POLLUTION CONTROL DIV. P.O. Box 95 Concord, N.H. 03302-0095 Tel. 603-271-3503 FAX 603-271-2181

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	iv
EXECUTIVE SUMMARY	v
I INTRODUCTION	I-1
1.1 BACKGROUND	I-1
1.2 PURPOSE / OBJECTIVES	I-1
II. STUDY AREA	II-1
2.1 WATERSHED CHARACTERISTICS	П-1
2.2 POTENTIAL POINT SOURCES OF POLLUTION	II-1
2.3 POTENTIAL NONPOINT SOURCES (NPS) OF POLLUTION	II-2
2.4 FOCUS AREA OF THE TMDL	II-3
III. METHODOLOGY	III-1
3.1 OVERALL APPROACH	III-1
3.2 DISSOLVED OXYGEN MODEL	III-1
3.3 REACHES	Ш-2
3.4 MODEL INPUT FOR DRY AND WET WEATHER TMDL MODELING	Ш-2
3.5 TARGET DO VALUES FOR TMDL MODELING	. Ш-12
3.6 ALLOCATION OF THE WET WEATHER TMDL	. Ш-12
3.7 ESTIMATION OF EXISTING NONPOINT SOURCE LOADINGS	III-12
3.8 DETERMINATION OF PRELIMINARY PERMIT LIMITS FOR THE	
CLAREMONT WWTF	III-13
IV. RESULTS AND DISCUSSION	IV- 1
4.1 TMDL RESULTS	IV-1
4.2 TMDL ALLOCATION RESULTS	IV-2
4.3 EXISTING NPS LOADING vs. PROPOSED NPS TMDL	IV-3
4.4 PRELIMINARY PERMIT LIMITS FOR THE CLAREMONT WWTF	IV-3
4.5 RESULTS OF SAMPLING TO CONFIRM OTHER WATER QUALITY	
EXCEED ANCES ON THE 202 (d) LIST	IV 7

Appendices:

Appendix A - State of New Hampshire 303(d) list Appendix B - Existing NPDES permits Appendix C - Allocation Example - Option #1 Appendix D - Nonpoint Source Loading Calculations Appendix E - Modeling Output Appendix F - Sampling Results Appendix G - References Appendix H - Pertinent Information from the Sugar River WLA Study, NHDES 1993

LIST OF TABLES

TABLE

Ш-1	Reach Characteristics	III-2
Ш-2	Model Input for Dry Weather TMDL - Option #1	Ш-6
Ш-3	Model Input for Dry Weather TMDL - Option #2	Ш-7
III-4	Model Input for Wet Weather TMDL	III-8
Ш-5	Discharge Values for Maximum Ammonia and NBOD	П-8
Ш-6	Runoff Loadings Based on Land Use	III-13
IV-1	Option #1 - Dry Weather TMDL	IV-1
IV-2	Option #2 - Dry Weather TMDL	IV-1
IV-3	Wet Weather TMDL	IV-1
IV-4	Allocation of Loads for the Wet Weather TMDL	IV-2
IV-5	Existing NPS Loading Due to Stormwater Runoff	IV-3
IV-6	Option #1 - Proposed WWTF Effluent Permit Limits	IV-5
IV-7	Option #2 - Proposed WWTF Effluent Permit Limits	IV-6

LIST OF FIGURES

FIGURE

II-1	Map of Sugar River Bas	sin		 Π-4
III_1	Schematic of Peaches			лт э
TTT= 1	Schematic of Reaches	***********	•••••••••••••••••••••	

EXECUTIVE SUMMARY

BACKGROUND

Section 303 (d) of the Clean Water Act (CWA) requires States to identify those surface waters for which technology based controls, such as secondary treatment, are not stringent enough to ensure that surface waters meet their legislated classification and their intended uses. Section 303 (d) further requires that the Total Maximum Daily Load (TMDL) be determined for all waterbodies included on the "303 (d) list" of impaired surface waters.

The New Hampshire 1994 303(d) list of impaired waters included dissolved oxygen (DO) exceedences of the Sugar River near the Town of Newport. Sampling performed in 1995, however, did not indicate any violations. Although there are no known current violations of DO standards, results of a Wasteload Allocation (WLA) study of the Sugar River conducted by the New Hampshire Department of Environmental Services (DES) in 1993 indicated the potential for future DO violations downstream of the Coy Paper dam in Claremont. In 1993, point sources downstream of the dam included the Coy Paper Company Wastewater Treatment Facility (WWTF) and the Claremont WWTF.

Since the WLA was completed, the Coy Paper Company has gone out of business. Subsequent modeling, however, indicated that even without Coy Paper discharging, there is still a potential, in the future, for the Claremont WWTF to violate DO standards, assuming it is discharging at its current secondary effluent limits and plant design flow. At the present time, the Claremont WWTF is discharging at approximately 50 percent of its design flow and at better than secondary limits. Therefore, although there are no known existing violations of DO, it was nevertheless decided to conduct a TMDL for the Sugar River downstream of the Coy Paper dam because of the potential for future DO violations caused by the Claremont WWTF.

PURPOSE

The primary purpose of this report, is to establish the Total Maximum Daily Load (TMDL) for DO, for the potentially impaired segment of the Sugar River, and, in accordance with the CWA, to allocate the maximum daily load among point sources, nonpoint sources, and a margin of safety (MOS).

Another important purpose of this report, was to develop the basis for discharge limits for the Claremont WWTF for the following conditions:

- Option 1 (existing conditions), which assumes that the Coy Paper WWTF is not discharging, and
- Option 2 * (possible future conditions), which assumes that the Coy Paper Company Facility is bought and resumes discharging.

This option is included merely for the convenience of the City. It is believed such information would be useful to the City of Claremont for planning purposes, as it would show the impact that a new discharge located at the Coy Paper Facility could have on the allowable effluent limits for the Claremont WWTF. In essense prior to any new discharge, the City should assess whether the discharge will impact the WWTF's permit limitations, and if so, how would the wastewater discharge loading be apportioned between the new discharge and the City. For the purposes of this study, it was assumed that if the discharge at the Coy Paper WWTF was reactivated, it would have the same effluent limits as the old Coy Paper NPDES permit. This assumption was simply for illustration purposes only.

Finally, this report also addresses the remaining isolated exceedances of water quality standards in the Sugar River that were noted on the 1994 303(d) list of impaired waters.

METHODOLOGY

The study area was divided into two reaches for modeling purposes. Reach 1, which includes the Coy Paper WWTF, extends from the Coy Paper dam downstream to the Claremont WWTF. Reach 2 includes the segment of the Sugar River from the Claremont WWTF to the Connecticut River.

The majority of parameters used in the model were based on the 1993 WLA. DO was modeled for dry and wet conditions. For dry weather modeling, the river flow was set equal to the 7Q10 low flow. For wet weather modeling the river flow was assumed to be equal to the summer average flow, which is the average daily flow that occurs between July 1 and September 30. Wet weather modeling included the pollutant loading of nonpoint sources such as stormwater.

TMDLs and proposed discharge limits were developed for the 5-day carbonaceous oxygen demand (CBOD₅) and ammonia nitrogen (NH_3 -N) as both of these pollutants can significantly reduce the concentration of DO in a receiving water.

Based on modeling, TMDLs were developed for dry and wet weather conditions in both reaches. Proposed permit limits for the WWTFs were based on the condition which resulted in the lowest allowable TMDL.

Allocation of the TMDLs for CBOD₅ and NH_3 -N was conducted for wet weather conditions. Based on estimated background conditions, loads were allocated among point sources, nonpoint sources and a margin of safety (MOS) to account for uncertainties in the modeling. Load allocations were developed for each reach and option investigated in this study.

The theoretical maximum daily load from nonpoint sources for each option was then

checked against estimates of existing nonpoint source loads to determine if existing nonpoint source loads exceed the theoretical maximum daily nonpoint source load. Existing nonpoint source loads were based on existing land use and estimations of pollutant concentrations for each land use.

CONCLUSIONS AND RECOMMENDATIONS

Based on the assumptions and results of this study, the following conclusions and recommendations are made:

The minimum concentration of DO (i.e., the DO sag) occurs in reach 2.

- The allowable loading of either CBOD₅ or NH_3 -N in reach 2 is very dependent on the loading and concentration of DO in reach 1. Therefore, increasing the loading at the Coy Paper WWTF reduces the allowable loading which may be discharged from the Claremont WWTF. This assumes that the existing discharge locations for both WWTFs remain unchanged.
- Results of dry and wet weather TMDL modeling are shown below. A comparison of total maximum daily loads in each reach shows that dry weather conditions control since the loadings during dry weather (7Q10 low flow) conditions are all less than the corresponding loadings during wet weather (average flow between July 1 and September 30) conditions.

Parameter	Optk	Dry Wea m 1 ⁰⁹	ther TMDL Optio	n 2 ⁴⁹	Wet Weather TMDL		
	Reach 1	Reach 2	Reads 1	Reach?	Reach 1	Reach ?	
CBOD, (LBS/DAY)	0	953	250	723	684	2789	
NH-IN (LBS/DAY)	0	276	15	246	154	439	

Dry Weather Versus Wet Weather TMDLS (3)

Notes:

- (1) Option 1 assumes no discharge from the Coy Paper Company and the Claremont WWTF is discharging at new (more stringent) effluent limits.
- (2) Option 2 assumes the Coy Paper Company is discharging at its 1992 NPDES permit limits, and the Claremont WWTF is discharging at new (more stringent) effluent limits.
- (3) All loadings shown are dependent on background loadings from the river just upstream of the specified reach. Background loadings are not included in the values shown.

• The proposed allocation of the Wet Weather TMDL for each option and reach are shown below.

Source of		Optie	m1 ^m		Option 2 ⁽⁰⁾			
Londing	Rea	ch l	Reach 2		Reach 1		Reach 2	
	CBOD, (bs/day)	NIL-N (brday)	CBOD, (bi/day)	NH ₅ -N (Balday)	CBOB, (Ibshiay)	NHLAN (Bridey)	CBOD ₂ (Bs/day)	NH ₆ -N (Bo/day)
Point ⁽²⁾ Source (PS)	0	0	953	276	250	15	723	246
Nonpoint ^(b) Source (NPS)	616	139	1557	119	366	124	1787	149
Margin of ⁽²⁾ Safety (MOS)	68	15	279	44	68	15	279	44
Total ⁴⁹ (TMDL)	684	154	2789	439	684	154	2789	439

Allocation of Loads for the Wet Weather TMDL

Notes:

- (1) Option 1 assumes no discharge from the Coy Paper WWTF and that the Claremont WWTF is discharging at new (more stringent) effluent limits.
- (2) Option 2 assumes that the Coy Paper WWTF is discharging at its 1992 permit limits and that the Claremont WWTF is discharging at new (more stringent) effluent limits.
- (3) Point source loadings are based on the proposed maximum day permit loadings for the Coy Paper and/or Claremont WWTFs. The Coy Paper WWTF is located at the beginning of Reach 1 and the Claremont WWTF is located at the beginning of Reach 2.
- (4) Nonpoint Source Loadings are equal to the Total TMDL minus the sum of the Point Source Loading and the Margin of Safety {i.e, NPS = Total (PS + MOS)}.
- (5) The Margin of Safety (MOS) is equal to 10 percent of the Total TMDL
- (6) Loadings shown for the Total TMDL are over and above the assumed background loading in the river upstream of each reach.
- A comparison of Existing NPS loads (see table below) to the allocated NPS loadings presented in the previous table shows that existing NPS loads are well below the allowable maximum daily NPS load in either reach.

Reac	h#1	Read	b #2
CBOD ₅ lbs/day	NH ₃ -N lbs/day	CBOD ₅ lbs/day	NH ₃ -N Ibs/day
27	9	8	11

Existing NPS Loads

Proposed WWTF discharge limits for summer and winter conditions, were developed for each option, and are shown on the following pages. With regards to these limits, the following conclusions and recommendations are made:

The proposed discharge limits for the Claremont WWTF, for either option, are more stringent than the City's current NPDES permit limits which are based on technology limits for secondary treatment.

Based on sampling results over the past two years, it appears that the Claremont WWTF can currently meet the proposed summer limits for CBOD₅ and NH₃-N. This is believed to be primarily due to the fact that the WWTF is currently treating only 50 percent of it's design flow.

The City may have to install a mixer or other means of meeting the proposed minimum effluent DO concentration of 7 mg/l. If this limit can not be met, additional modeling should be conducted at lower effluent DO concentrations. This, however, would result in lower limits for $CBOD_5$ and/or NH_3-N .

As flows to the Claremont WWTF approach the plant's design capacity, the City may have to make future improvements to the WWTF to meet the proposed limits. There is a possibility however, that the Claremont WWTF could continue discharging at its current NPDES permit limits, if it's discharge was relocated directly to the Connecticut River (downstream of the Sugar River confluence). Additional modeling would be needed, however, to confirm this assumption.

A comparison of options 1 and 2 shows that if the Coy Paper Company is bought and the discharge is reactivated with effluent limits equal to the old NPDES permit for Coy Paper, it reduces the allowable effluent limits at the Claremont WWTF. It is recommended that the City take this into consideration if plans are made to reactivate the discharge at the Coy Paper Facility. If effluent limits are considered for the discharge at the former Coy Paper Company, which are different from those assumed in this study, additional modeling would have to be conducted to determine new limits for the Claremont WWTF.

This study also addressed other isolated exceedances of water quality standards in the Sugar River which were included on the State's 1994 303(d) list. These included water quality violations of copper, lead and toxics (based on failure of a Whole Effluent Toxicity (WET) test of the river water). Sampling was conducted in 1995 to confirm these exceedances. No violations of copper or lead were found. Failure of WET tests were attributed to a naturally occurring fungus in the river water.

OPTION #1 Proposed WWTF Effluent Discharge Limits

WWIF	Parameter	mg/l				lbs / day	
		Average Monthly	Average Weekly	Maxhmum Dally	Average Monthly	Average Weekly	Maximum Dally
Coy Paper (No discharge)							
Claremont	DO	No	less than	7.0 mg/l			
(3.94 MGD)	CBOD ₅	25	28	29	822	920	954
	NH,-N	6.8		8.4	223		276

Summer (June 1 - October 31)

Winter (November 1 - May 31)

WWEF	Parameter		mg/l				
		Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily
Coy Paper (No discharge)		—	-				—
Claremont	DO	No	less than	7.0 mg/l			
(3.94 MGD)	CBOD,	25	28	29	822	92 0	954
	NH ₃ -N	11.4		12.3	375		404

Assumes no discharge from Coy Paper

OPTION #2 Proposed WWTF Effluent Discharge Limits

WWIF	Parameter	mg/l			lbs / day			
		Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily	
	Flow ⁽¹⁾			0.9 MGD				
Coy Paper (0.9 MGD)	DO	No	less than	6.0 mg/l				
	BOD ₅ ⁽¹⁾				295		300	
	NH ₃ -N	2		2			15	
Claremont	DO	No	less than	7.0 mg/l				
(3.94 MGD)	CBOD ₅	19	21	22	624	690	723	
	NH ₃ -N	6.3		7.4	207		243	

Summer (June 1 - October 31)

Winter (November 1 - May 31)

WWIF	Parameter	mg/l				lbs / day	
		Average Monthly	Average Weekly	Maximum Dally	Average Monthly	Average Weekly	Maximum Daily
	Flow ⁽¹⁾			0.9 MGD			
Coy Paper (0.9 MGD)	DO	No	less than	6.0 mg/l	r		
	BOD ₅ ⁽¹⁾				295		300
	NH,-N	2		2			15
Claremont (2.04	DO	No	less than	7.0 mg/l			
(3.94 MGD)	CBOD ₅	25	27	28	822	887	921
	NH ₃ -N	8.5		9.2	279		302

Notes:

(1) Values are based on the 1992 NPDES permit for Coy Paper. CBOD₅ values used in the model were assumed equal to 83 % (25/30) of the BOD₅.

SECTION I

-

1

-

SECTION I INTRODUCTION

1.1 BACKGROUND

Section 303 (d) (1) (A) of the Clean Water Act (CWA) requires each state to identify waters for which secondary or technology effluent limitations are not stringent enough to meet water quality standards. Further, Section 303 (d) (1) (C) requires each state to establish a Total Maximum Daily Load (TMDL), for such waters identified in section 303 (d) (1) (A).

In 1994, the Sugar River was included on the New Hampshire 303(d) list of impaired waters because of isolated exceedances of dissolved oxygen (DO) water quality standards near the Town of Newport. A copy of the State's 1994 303(d) list is provided in Appendix A. Sampling performed in 1995, however, did not verify any DO violations. Although there are no known current violations of DO standards, results of a Wasteload Allocation (WLA) study of the Sugar River conducted by the New Hampshire Department of Environmental Services (DES) in 1993 indicated the potential for future DO violations downstream of the Coy Paper dam in Claremont. In 1993, point sources downstream of the dam included the Coy Paper Company Wastewater Treatment Facility (WWTF) and the Claremont WWTF.

Since the 1993 WLA was completed, the Coy Paper Company has gone out of business. Subsequent modeling, however, indicated that even without Coy Paper discharging, there is still a potential, in the future, for the Claremont WWTF to violate DO standards, assuming it is discharging at its current secondary effluent limits and plant design flow. At the present time, the Claremont WWTF is discharging at approximately 50 percent of its design flow and at better than secondary limits. Therefore, although there are no known existing violations of DO, it was nevertheless decided to conduct a TMDL for the Sugar River downstream of the Coy Paper dam because of the potential for future DO violations caused by the Claremont WWTF.

1.2 PURPOSE / OBJECTIVES

The purpose of this report is to accomplish the following three objectives:

- (1) To establish the Total Maximum Daily Load (TMDL) that the Sugar River can assimilate without violating DO water quality standards, and, in accordance with the CWA, to allocate the TMDL among point sources, nonpoint sources, and a margin of safety (MOS).
- (2) To develop preliminary discharge limits for the Claremont WWTF, based on the results of the TMDL process, for the following conditions:

Option 1 (existing conditions), that is the Coy Paper WWTF is not discharging, and

Option 2 * (possible future conditions), which assumes that the Coy Paper Company Facility is bought and resumes discharging.

It is believed such information would be useful to the City of Claremont for planning purposes, as it would show the impact that a discharge located at the Coy Paper Facility could have on the allowable effluent limits for the Claremont WWTF. For the purposes of this study, it was assumed that if the discharge at the Coy Paper WWTF was reactivated, it would have the same effluent limits as the old Coy Paper NPDES permit. In short, the City should be aware that a discharge at Coy Paper WWTF may impact their WWTF discharge permit, and that they should look at how the wastewater loadings could be apportioned between the new discharger and their WWTF.

(3) To address the remaining isolated exceedances of water quality standards in the Sugar River that were noted on the 1994 303(d) list of impaired waters. As shown in Appendix A, these include occasional water quality violations of copper, lead, and toxics (based on failure of Whole Effluent Toxicity (WET) tests of the river water).

*

SECTION II STUDY AREA

122**40**000

-

69999

HEARING

SECTION II STUDY AREA

2.1 WATERSHED CHARACTERISTICS

General: The Sugar River is approximately 27 miles long and is located in the Connecticut River Basin. As shown on Figure II-1, the Sugar River originates at the outlet of Lake Sunapee and flows through the towns of Sunapee, Newport and the City of Claremont where it discharges to the Connecticut River. The Sugar River has a total drainage area of approximately 275 square miles and a total change in elevation, from Lake Sunapee (1,092 feet) to the confluence of the Connecticut River (290 feet), of about 802 feet.

Dams: There are numerous dams in the Sugar River watershed which serve to regulate flow in the river. Of the 31 reported dams, 16 are active and 15 are classified as inactive, which means that the dams are breached or in ruins and water is not impounded. Major dams along the main stem of the Sugar River, include the following:

- Lake Sunapee Dam Sunapee
- Wendall Marsh Dam Sunapee
- Sugar River Mill Dam Newport
- Monadnock Mills Dam Claremont
- Claremont Paper Co. Dam Claremont
- Woolen Mill Dam Claremont
- Coy Paper Co. Dam Claremont

Land Use: The majority of the Sugar River watershed is rural. The banks of the river mainly consist of forested land with a scattering of houses, farms, and cleared areas, except where the river flows through the City of Claremont. An estimate of the percentage of various land uses in the Sugar River watershed, based on land use maps prepared by the DES Geographic Information System (GIS), is presented below:

- 87% rural (i.e. forested and undeveloped)
- 10% active agriculture
- 3% urban

2.2 POTENTIAL POINT SOURCES OF POLLUTION

As shown on Figure II-1 and, as summarized in the list below, there are six wastewater treatment facilities located on the Sugar River, all of which represent potential point sources (PS) of pollution. Three of the wastewater treatment facilities are municipal and three are industrial. A copy of the effluent limits from the NPDES permit for each facility is provided in Appendix B.

The **Sunapee WWTF**, is an oxidation ditch WWTF with a design capacity of 0.64 MGD.

The Newport WWTF, is an aerated lagoon WWTF with a design capacity of 1.30 MGD.

The **Claremont WWTF**, is an activated sludge WWTF with a design capacity of 3.94 MGD.

The **Dorr Woolen WWTF**, located in Newport, NH, is an industrial WWTF with a design capacity of 1.0 MGD.

The Strum Ruger WWTF, is an industrial facility in Newport, NH, which discharges non-contact cooling water to the Sugar River and has a design capacity of approximately 1.0 MGD.

The Coy Paper Co. WWTF, is located in Claremont, NH, and, in 1992, had a permitted design flow of approximately 1.0 MGD. As previously mentioned, this facility is not currently discharging because the Coy Paper Company has gone out of business. In the future, however, there may be a possibility that the Coy Paper Company could be bought and the discharge located at this site could be reactivated, thus the reason this option was studied.

2.3 POTENTIAL NONPOINT SOURCES (NPS) OF POLLUTION

Nonpoint Pollution is generated from diffuse sources rather than a single point source discharge. Nonpoint Source (NPS) Pollution can enter a surface water via the groundwater or as runoff when it rains. Examples of potential nonpoint sources of pollution are given below:

- Stormwater runoff
- Construction
- Agriculture
- Landfills and junkyards
- Silviculture
- Septage and subsurface disposal systems
- Storage tanks
 - Hydromodification

This study focused primarily on NPS pollution from stormwater runoff. As stormwater washes over land pollutants from lawns, parking lots, city streets, farm fields, or construction sites, are conveyed to the receiving water. As will be explained later in the section entitled "Methodology", estimates of NPS pollutant loadings from stormwater were based on local literature values of pollutant concentration for various land uses.

2.4 FOCUS AREA OF THE TMDL

As shown on Figure II-1, the focus area of this TMDL is from the Coy Paper dam in Claremont, downstream to the confluence of the Sugar River with the Connecticut River. As mentioned in Section 1.1, this river segment was selected because it is where modeling predicted a potential for future DO violations when the Claremont WWTF reaches its design flow and discharges at secondary limits.

II-4

SECTION III

١

, 200

-

BCC - Longer - Contraction - C

METHODOLOGY

SECTION III METHODOLOGY

3.1 OVERALL APPROACH

The overall approach used to complete this study is presented below:

- Select a dissolved oxygen model
- Determine river reaches
- Select model input for dry and wet weather TMDL modeling
- Establish acceptable target DO values for TMDL modeling
- Allocate the wet weather TMDL among point, nonpoint sources, and a margin of safety.
- Develop preliminary discharge limits for the Claremont WWTF.

Each of the above steps is discussed in the following sections.

3.2 DISSOLVED OXYGEN (DO) MODEL

The use of mathematical models to determine the concentration of DO in a river began in the 1920s. The model selected for this TMDL study was EPA's dissolved oxygen deficit model (Ref. #11). The model is shown below which accounts for the effects of reaeration, carbonaceous and nitrogenous oxygen demand, photosynthesis, respiration as well as sediment oxygen demand.

DO MODEL EQUATION

 $D = Do e^{-Kat} + [Kd/(Ka - Kd)](Lo - Lrd/Kd)(e^{-Kdt} - e^{-Kat}) + [Kn/(Ka - Kn)](No - Nrd/Kn)(e^{-Knt} - e^{-Kat}) + [(R + Sb + Lrd + Nrd - P)/Ka](1 - e^{-Kat})$

Where:

D	=	DO deficit at a specified location (mg/l)
Do	=	initial DO deficit (mg/l)
Ka	-	reacration rate (1/day)
Kd	=	rate of decay of CBOD (1/day)
Lo	-	initial ultimate CBOD (mg/l)
Lrd	=	mass rate of CBOD entering reach per unit volume of river water (mg/l/day)
No	=	initial ultimate NBOD (mg/l)
Kn	=	decay rate of NBOD (1/day)
Nrd	=	mass rate NBOD entering reach per unit volume of river water (mg/l/day)
R	=	oxygen utilization rate due to respiration (mg/l/day)
Р	=	oxygen production rate due to photosynthesis (mg/l/day)
Sb	=	sediment oxygen demand (mg/l/day)

Parameter values used as model input for this study, and the rational for their selection, are presented in Section 3.4.

3.3 REACHES

The assimilative capacity of a river varies with the size and characteristics of each reach of the river. Reaches are defined between all major point loads or whenever the river geometry, hydraulic conditions or biochemical processes are expected to change significantly.

Modeling for this study focused on the area downstream of the Coy Paper dam as this was the segment of the river where modeling predicted the potential for future DO violations. It was not considered necessary to start further upstream because of the dam serves to enhance the assimilative capacity of the river. Furthermore, the 1993 WLA showed that the impact of upstream WWTFs did not extend down to the Coy dam.

Similar to the 1993 WLA, the area downstream of the Coy Paper dam was divided into two reaches. Reach 1 is approximately 0.24 miles long and extends from the Coy Paper WWTF to just upstream of the Claremont WWTF. Reach 2 is approximately 1.55 miles long and is from the Claremont WWTF to the Connecticut River confluence. A description of the reaches and other information needed for the TMDL is provided in Table III-1. A schematic of the reaches is shown in Figure III-1.

Reach	Description	River Miles	Urban Area sq. miles	Rural Area sq. miles	Agric.Area sq. miles
1	Coy Paper Dam to Claremont WWTF	0.24	0.75	1.47	0.48
2	Claremont WWTF to Connecticut River	1.55	0.03	3.30	0.57

 Table III-1

 Reach Characteristics

3.4 MODEL INPUT FOR DRY AND WET WEATHER TMDL MODELING

Values used as model input for dry and wet weather TMDLs are presented in Tables III-2, III-3 and III-4. Tables III-2 and III-3 show the dry weather model input for summer and winter conditions for options 1 and 2. As discussed in Section 1.2, option 1 assumes that only the Claremont WWTF is discharging while option 2 assumes that both the Coy Paper WWTF and the Claremont WWTF are discharging.

Figure III-1 Schematic of Reaches

lll-3

As will become evident, most parameters are based on the values used in the 1993 WLA Study which modeled the majority of the Sugar River from the outlet of Lake Sunapee to it's confluence with the Connecticut River. Copies of pertinent sections of the 1993 WLA are provided in Appendix H.

The 1993 WLA study included extensive field measurements and water quality sampling which was used to calibrate and verify the DO model. In most cases, the parameters used for dry weather are the same as the model run in the 1993 WLA for 7Q10 low flow conditions. Similarly most of the wet weather model parameters are also based on the 1993 WLA. However, for wet weather, the calibrated model based on sampling conducted on June 23 and 24, 1992 was used, because the flow on that day (120 cfs) was very close to the flow used to model wet weather conditions (153 cfs). This is further discussed below.

Upstream River Conditions (UPFLOW, UPDO, UPCBOD, UPNBOD):

UPFLOW: The upstream flow for reach 1 for dry weather modeling was assumed to be equal to the 7Q10 low flow of 39.9 cfs, which is the average river flow over seven consecutive days that is not exceeded more than once every 10 years on the average. It is based on data from the USGS gage on the Sugar River in West Claremont. The flow at the gage was prorated by drainage area to derive the 7Q10 flow for reach 1. The UPFLOW value for reach 2 is equal to the UPFLOW value for reach 1 plus the DISCHARGE FLOW for reach 1.

For wet weather modeling, the upstream flow for reach 1 was set equal to the summer average flow, which is the average daily flow which occurs in July, August and September. The value of 149 cfs was also based on flow data from the gage in West Claremont, which was then prorated by drainage area. Calculations are shown below:

Summer Average flow at West Claremont gage: =	149 cfs
Drainage area to West Claremont gage =	270 sm
Yield =	0.556 cfs/sm
Drainage area to reach 1 =	270.95 sm

Summer Average flow at reach 1 = $270.95 \times 0.556 = 150.64$ cfs

UPDO: Dry and wet weather background river DO concentrations for reach 1 were based on the 1993 WLA study. As part of the 1993 WLA, sampling was conducted just downstream of the Coy Paper Dam. The dry weather UPDO value is the same as that used in the 1993 WLA for 7Q10 conditions. The UPDO value for wet weather was based on the measured percent saturation in the 1993 WLA, on June 23, 1992, when the river flow was close to the summer average flow. UPDO values for reach 2 were set equal to the theoretical DO at the end of reach 1, based on modeling. **UPCBOD and UPNBOD:** Dry and wet weather background conditions for reach 1 were obtained from the 1993 WLA study. UPCBOD and UPNBOD values for dry weather were based on 1993 WLA, 7Q10 model runs. Reach 2 UPCBOD and UPNBOD values were set equal to the model values at the end of reach 1. UPCBOD and UPNBOD values for the wet weather condition were based on calibrated model runs for June 23-24, 1992.

Discharger Parameters (FLOW, DO, UCBOD, NBOD):

FLOW: Flows used for the Claremont WWTF and the Coy Paper WWTF, were based on the design flows used in the most recent NPDES permit for each facility (see Appendix B).

DO: As part of the 1993 WLA study, the effluent from the Claremont WWTF and Coy Paper WWTF were sampled. When modeling reach 1, the concentration of DO (mg/l) from the Coy Paper WWTF was set to 6.0 mg/l. Since the Claremont WWTF will need stricter effluent limits, when discharging at their design flow, the DO of the effluent was set equal to 7.0 mg/l.

UCBOD: As shown in Appendix B, Coy Paper's NPDES permit includes a limit for BOD₅ and not CBOD₅. Based on federal technology limits for secondary treatment, CBOD₅ was assumed to be equal to 83% (25/30) of BOD₅. To convert from CBOD₅ to UCBOD, CBOD₅ values were multiplied by 1.6. UCBOD values for the Claremont WWTF were adjusted in the model until the minimum desired DO level was achieved.

NBOD: NBOD values were based on NH₃-N concentrations multiplied by 4.57, which represents the amount of oxygen needed to oxidize 1 mg/l of NH₃-N to nitrate (NO₃). In addition to exerting an oxygen demand, NH₃-N can also be toxic to aquatic life. Therefore, the maximum NBOD concentration for either the Coy Paper WWTF or the Claremont WWTF, was based on the State Water Quality Standards for NH₃-N (which is temperature dependent), and the dilution factor. The equations used to calculate the allowable effluent concentration of NH₃-N based on toxicity is shown below. Results are presented in Table III-5 which shows the maximum allowable effluent concentration of NH₃-N (base on chronic toxicity) and NBOD for the Coy Paper and Claremont WWTFs for warm (25° C) and cold (15° C) temperatures.

D.F. = [(Qr + Qp) / Qp] * .90

Maximum effluent $NH_3-N = D.F. \times WQS$ for NH_3-N Where:

D.F.	=	dilution factor with 90% of assets
Qr	<u>***</u>	river flow
Qp	. **	WWTF flow
WQS	==	Water Quality Standard

Option #1 (Temperature = 25° C)							
Parameter Reach #1 Reach #2 Parameter Reach #1 Reac							
Upstream Conditions			Ka - 1/day	2.1	10.6		
7Q10 Flow - cfs	39.9	39.9	Kd - 1/day	7.0	2.4		
UP DO - mg/l	7.9	*	Kn - 1/day	0.5	2.1		
UP UCBOD- mg/l	3.0		R - mg/l/day	0.085	0.05		
UP NBOD - mg/l	1.1		P - mg/l/day	0	0		
Discharge conditions	Соу	Claremont	Saturation Cs - mg/l	8.16	8.16		
Discharge flow - cfs	NIO	6.10	River Velocity - fps	0.47	0.51		
Discharge DO - mg/l	NIO	7.0	Sb or SOD - mg/l/day	0	0		
Discharge UCBOD - mg/l	NIO	**	Starting mile	1.79	1.55		
Discharge NBOD - mg/l	NIO	**	Ending mile	1.55	0		

Table III-2 Model Input for Dry Weather TMDL

Option #1 (Temperature = 15° C)

					inter or the second
Parameter	Reach #1	Reach #2	Parameter	Reach #1	Reach #2
Upstream Conditions			Ka - 1/day	1.66	8.4
7Q10 Flow - cfs	39.9	39.9	Kd - 1/day	5.56	1.91
UP DO - mg/l	9.65	•	Kn - 1/day	0.32	1.67
UP UCBOD- mg/l	3.0		R - mg/l/day	0.085	0.05
UP NBOD - mg/1	1.1		P - mg/l/day	0	0
Discharge conditions	Соу	Claremont	Saturation Cs - mg/l	9.964	9.964
Discharge flow - cfs	NIO	6.10	River Velocity - fps	0.47	0.51
Discharge DO - mg/l	NIO	7.0	Sb or SOD - mg/l/day	0	0
Discharge UCBOD - mg/l	NIO	**	Starting mile	1.79	1.55
Discharge NBOD - mg/l	NIO	**	Ending mile	1.55	0

Notes:

NIO = Not in Operation

* = Value was based on model values at the end of reach 1.

* * = Value was adjusted until the model predicted the desired minimum DO.

Parameter	Reach #1	Reach #2	Parameter	Reach #1	Reach #2
Upstream Conditions			Ka - 1/day	2.1	10.6
7Q10 Flow - cfs	39.9	41.29	Kd - 1/day	7.0	2.4
UP DO - mg/l	7.9	*	Kn - 1/day	0.5	2.1
UP UCBOD- mg/l	3.0	*	R - mg/l/day	0.085	0.05
UP NBOD - mg/l	1.1	•	P - mg/l/day	0	0
Discharge conditions	Соу	Claremont	Saturation Cs - mg/l	8.16	8.16
Discharge flow - cfs	1.39	6.1	River Velocity - fps	0.47	0.51
Discharge DO - mg/l	6.0	7.0	Sb or SOD - mg/l/day	0	0
Discharge UCBOD - mg/l	53	**	Starting mile	1.79	1.55
Discharge NBOD - mg/l	9.0	**	Ending mile	1.55	0

Table III-3 Model Input for Dry Weather TMDL

Option #2 (Temperature = 25° C)

Option #2 (Temperature = 15° C)

Parameter	Reach #1	Reach #2	Parameter	Reach #1	Reach #2
Upstream Conditions			Ka - 1/day	1.66	8.4
7Q10 Flow - cfs	39.9	41.29	Kd - 1/day	5.56	1.91
UP DO - mg/l	9.65	*	Kn - 1/day	0.32	1.67
UP UCBOD- mg/l	3.0	*	R - mg/l/day	0.085	0.05
UP NBOD - mg/l	1.1	*	P - mg/l/day	0	0
Discharge conditions	Соу	Claremont	Saturation Cs - mg/l	9.964	9.964
Discharge flow - cfs	1.39	6.1	River Velocity - fps	0.47	0.51
Discharge DO - mg/l	6.0	7.0	Sb or SOD - mg/l/day	0	0
Discharge UCBOD - mg/l	53	**	Starting mile	1.79	1.55
Discharge NBOD - mg/l	9.0	**	Ending mile	1.55	0

Notes:

- * = Value was based on model values at the end of reach 1.
- * * = Value was adjusted until the model predicted the desired minimum DO.

Parameter	Reach #1	Reach #2	Parameter	Reach #1	Reach #2
Upstream Conditions			Ka - 1/day	2.0	10.
7Q10 Flow - cfs	150.64	153.54	Kd - 1/day	7.0	2.4
UP DO - mg/l	7.3	*	Kn - 1/day	0.5	2.1
UP UCBOD- mg/l	3.0	*	R - mg/l/day	0.085	0.05
UP NBOD - mg/l	0.5	*	P - mg/l/day	0	0
Discharge conditions			Saturation Cs - mg/l	8.16	8.16
Discharge flow - cfs	2.9	8.28	River Velocity - fps	0.91	0.92
Discharge DO - mg/l	7.0	7.0	Sb or SOD - mg/l/day	0	0
Discharge UCBOD - mg/l	**	**	Starting mile	1.79	1.55
Discharge NBOD - mg/l	**	* *	Ending mile	1.55	0

Table III-4Model Input for Wet Weather TMDL

(Temperature = 25° C)

Notes:

* * = Value was adjusted until the model predicted the desired minimum DO.

Facility	WWTF Flow cfs	River Flow cfs	Temp. C	Dilution Factor	la-stream WQS NH ₃ -N mg/l	Effluent Chronic Limit mg/l	Effluent NBOD mg/l
Coy Paper	1.39	39.9	25	26.7	1.01	27.0	123.4
			10		2.21	59.0	269.6
Claremont	6.10	41.29	25	6.99	1.01	7.06	32.3
			10		2.21	15.45	70.60

 Table III-5

 Discharge Values for Maximum Ammonia and NBOD

* = Value was based on model values at the end of reach 1.

The NBOD values used in the model were DO controlled and were well below the maximum values shown in Table III-5, which were based on NH₃-N toxicity. As shown in Table III-3, a NBOD of 9.0 mg/l was assumed for the Coy Paper WWTF. This was based

on sampling performed for the 1993 WLA, which indicated effluent NH_3 -N concentration of about 2.0 mg/l. NBOD values for the Claremont WWTF were adjusted until the desired minimum DO level was achieved.

Mass Rate of CBOD and NBOD (Lrd and Nrd):

The DO equation shown in section 3.2, includes the parameters Lrd and Nrd which stand for the mass rate of CBOD and NBOD respectively, that enter each reach per unit volume of river water. Similar to the 1993 WLA, Lrd and Nrd was assumed to be equal to zero in this study.

Reaeration Rate Coefficient (K₄):

The main sources of dissolved oxygen for a river or stream are reaeration from the atmosphere and dams, dissolved oxygen in tributaries and photosynthesis. K_a is the rate at which oxygen is transferred from the atmosphere to the river. Factors which can affect K_a include depth, velocity, turbulence, temperature and the amount of oxygen in the river.

Dry weather values of K_a (temperature 25° C) for each reach were obtained from modeling in the 1993 WLA conducted under 7Q10 conditions. Wet weather K_a values (temperature 25° C) were based on the calibrated model in the 1993 WLA for data taken on June 23 and 24, 1992. For temperature of 15° C, K_a values were adjusted using the coefficients and equations used in the 1993 WLA.

Deoxygenation Rate Coefficient (K_d):

The reduction of BOD in a river is a function of settling, biochemical oxidation and absorption by bottom deposits. The rate of removal of BOD is defined as the deoxygenation rate coefficient (K_i) . K_i can generally be expressed as:

$\mathbf{K}_{1} = \mathbf{K}_{s} + \mathbf{K}_{d} + \mathbf{K}_{b}$

where:

• A second s	
$K_1 = 1$	total removal rate of BOD
K _s =	settling losses
$K_d =$	biochemical oxidation
K _b =	absorption from bottom deposits

As explained in the 1993 WLA, K_s is not considered to be a significant factor in the Sugar River because the existing wastewater treatment facilities contribute relatively low levels of total suspended solids. Further, much of the tributary area to the Sugar River is undeveloped. Therefore, K_s can be dropped from the general equation.

Similar to the 1993 WLA, it was assumed that any BOD samples obtained would reflect

the effects of not only the biochemical oxidation but also bottom absorption losses. Thus, the K_b rate is inherently included in the overall K_d rate factor. In this study, K_l was assumed to be equal to K_d .

Dry weather values of K_d (temperature 25° C) for each reach were obtained from modeling in the 1993 WLA conducted under 7Q10 conditions. Wet weather K_d values (temperature 25° C) were based on the calibrated model in the 1993 WLA for data taken on June 23 and 24, 1992. For temperature of 15° C, K_d values were adjusted using the coefficients and equations used in the 1993 WLA.

Nitrification Rate Coefficient (K_n):

The rate at which nitrification (K_n) occurs is an important element in the DO model. Although, nitrification causes a drain on DO, it does not represent a permanent loss of oxygen. This is because nitrate oxygen is available as "stored dissolved oxygen", a reserve asset that is again available when the DO is depleted.

Nitrification is a two step process in which ammonia (NH_3) is transformed into nitrites (NO_2^{-}) and nitrates (NO_3^{-}) . The process begins with ammonium conversion to nitrite by *Nitrosomonas* bacteria, which is followed by nitrite conversion to nitrate by *Nitobacter* bacteria. The relatively slow growth rate of *Nitrosomonas* bacteria limits the nitrification process. Both organisms are most efficient at temperatures of 14 to 35° C, pHs of 8.0 to 8.5.

Dry weather values of K_n (temperature 25° C) for both reaches were obtained from modeling conducted as part of the 1993 WLA for 7Q10 conditions. Wet weather K_n values (temperature 25° C) were based on the calibrated model in the 1993 WLA for data taken on June 23 and 24, 1992. For temperature of 15° C, K_n values were adjusted using the coefficients and equations used in the 1993 WLA.

Photosynthesis/Respiration (P and R):

The presence of aquatic plants in a water body can have a profound effect on the DO resources and the variability of the DO throughout a day or from day to day. During photosynthic cell synthesis, algae produce DO, whereas algal respiration consumes DO. Photosynthesis, which is dependent on sun light, occurs only during daylight hours while respiration occurs continuously. The two principal issues associated with the photosynthesis and respiration components on DO are (a) the degree to which the net effect of photosynthesis and respiration contributes to the average DO resources and (b) the expected diurnal variability in DO as a result of the presence of aquatic plants.

Since DO sampling, for the Sugar River WLA, was conducted in the early morning hours, the photosynthesis rate was assumed to be zero. Respiration rates must be calculated since respiration occurs around the clock. The equation (Ref. #11) used to determine the respiration rate (R) is shown below.

Respiration equation

$$\mathbf{R} = \mathbf{a}_{n} \mathbf{D}_{n} \mathbf{A}$$

where:

 $a_0 = 0.133 \text{ mg O}_2/\text{ug Chlor a}$

 D_p is the rate of algae as determined by the following relationship: $D_p = 0.1 (1.08)^{T-20} = 0.1(1.08)^{25-20} = 0.147$ A = chlorophyll "a" measurement

Dry weather values of P and R for reaches 1 and 2 were obtained from modeling conducted as part of the 1993 WLA for 7Q10 conditions. Wet weather P and R values were based on the calibrated model in the 1993 WLA for data taken on June 23 and 24, 1992.

Sediment Oxygen Demand (SOD or Sb):

Oxygen demand by benthic sediments and organisms can represent a large fraction of oxygen consumption in surface waters. The rate at which dissolved oxygen is removed from the water column due to the decomposition of organic material in the sediments is known as the sediment oxygen demand. The major factors affecting SOD are: temperature, available oxygen, makeup of the biological community, organic and physical characteristics of the sediment, current velocities over the sediments and chemistry of the interstitial water.

The SOD rate used in the 1993 WLA study and this TMDL was assumed to be negligible (SOD = 0). This assumption is based on the relatively high velocities in the Sugar River and the fact that no significant organic deposits were observed in the sediments.

DO Saturation Value (Cs):

The DO saturation values for dry (summer and winter) and wet weather modeling were obtained from the 1993 WLA. These values were based on a temperature of 15 and 25 degrees Celsius and were adjusted for salinity and elevation, using equations obtained from reference #11.

Velocity (V):

The velocities for dry weather modeling are based on modeling conducted as part of the

1993 WLA for 7Q10 conditions. Wet weather velocities were based on the calibrated model in the 1993 WLA for data taken on June 23 and 24, 1992.

3.5 TARGET DO VALUES FOR TMDL MODELING

Use of the DO model to determine TMDLs involves an iterative process. Known parameters are first input in the model. Variable parameters (usually the discharge CBOD and NBOD) are then adjusted until the model predicts a minimum DO that corresponds to the allowable minimum DO. For this study, the minimum allowable DO (i.e., the "target DO") for TMDL modeling was set equal to 75 percent of the DO saturation value. This target DO was selected because State law (RSA 485-A:8,II), requires Class B waters to maintain a dissolved oxygen level of at least 75 percent of saturation.

3.6 ALLOCATION OF THE WET WEATHER TMDL

Once the wet weather TMDL for each reach was determined, it was then necessary to allocate the total load among point sources (PS), and nonpoint sources (NPS). In addition, federal law requires that the allocation include a margin of safety (MOS) to account for uncertainties in modeling.

Before proceeding it is important to understand that the TMDL as defined herein, is the additional load (i.e., the load over and above the background load in the river), that can be added to a river at a specified location. This is consistent with the way that loadings have been historically reported in WLA studies. It is also important to realize that the TMDL as defined herein is dependent on background river loadings assumed in the model. That is, for example, if lower river background loadings were input into the model, the TMDL would increase. For this study, the following procedure was used to allocate the wet weather TMDL.

- First, the MOS was determined. This was assumed to be 10 percent of the TMDL.
 - The point source (PS) maximum daily load was then determined. This was set equal to the maximum daily loading used in the model for the WWTF in each reach.
 - Lastly, the allowable nonpoint source (NPS) loading was determined. This was assumed equal to the remaining loading (NPS = TMDL PS MOS).

Allocations were performed for options 1 and 2. An example of how the allocation for option 1 was calculated is provided in Appendix C.

3.7 ESTIMATION OF EXISTING NONPOINT SOURCE LOADINGS

Once the allocation of the wet weather TMDL was determined, it was desired to compare the allocated NPS load to existing NPS loads. The following procedure was used to determine

existing NPS loads. An example calculation is provided in Appendix D.

- Calculate the summer average flow to the beginning of the reach.
- Determine the drainage area for the reach.
- Determine the square miles of rural, agricultural, and urban areas.
- Using loadings from Table III-6, calculate the weighted CBOD and NH₃-N concentrations.
- Calculate mass loading {flow (MGD) x weighted concentration x 8.34 }

Runoff Loadings Based on Land Use 15.6				
LAND USE	CBOD (mg/l)	NH ₂ -N (mg ³)		
RURAL.		0.19		
AGRICULTURAL	5.0	5.04		
URBAN - HIGH	30.0	1.00		
URBAN - MEDIUM	26.0	0.75		
URBAN - LOW	11.0	0.50		

 Table III-6

 Runoff Loadings Based on Land Use

3.8 DETERMINATION OF PRELIMINARY DISCHARGE LIMITS FOR THE CLAREMONT WWTF

As discussed in Section 1.2, it was desired to develop preliminary discharge limits for the Claremont WWTF for both options 1 and 2, as it is believed this information may be useful to the City of Claremont for planning purposes. To do so, it was first necessary to compare the dry and wet weather TMDLs. The condition which resulted in the lowest allowable TMDL was considered to be the most stringent and was used to develop preliminary discharge limits (CBOD₅ and NH₃-N) for the Claremont WWTF.

SECTION IV

e el subalente

......

Contraction of the second s

COLUMN 1

RESULTS AND DISCUSSIONS

SECTION IV RESULTS AND DISCUSSION

4.1 TMDL RESULTS

Results of modeling to determine dry and wet weather TMDLs revealed the following (Appendix E contains copies of the modeling output):

- The major nonpoint source (NPS) of potential pollution is stormwater runoff. No other major NPSs were identified.
- The minimum concentration of DO (i.e., the DO sag) occurs in reach 2.
- The allowable loading of either CBOD₅ or NH₃-N in reach 2 is very dependent on the loading and concentration of DO in reach 1.
- Based on the assumptions and methods used in this study, results of modeling indicates that the dry weather TMDL for option 1 and 2 are as follows:

Table IV-1 Option #1 Dry Weather TMDL

Parameter	Reach #1	Reach #2
CBOD ₅ (lbs/day)	0	953
NH3-N (lbs/day	0	276

Table IV-2 Option #2 Dry Weather TMDL

Parameter	Reach #1	Reach #2
CBOD ₅ (lbs/day)	250	723
NH₃-N (lbs/day	15	246

• Based on the assumptions and methods used in this study, Table IV-3 shows the wet weather TMDL. As previously mentioned, the TMDL in reach 2 is highly dependent on the TMDL assumed for reach #1. Because of the dependency of reach 2 on reach 1, there are many possible combinations of loadings, one of which is presented in Table IV-3 below.

Table IV-3						
Wet	Weather TMDL					

Parameter	Reach #1	Reach #2
CBOD ₅ (lbs/day)	684	2789
NH ₃ -N (lbs/day)	154	439

• A comparison of the dry weather TMDL for either option 1 or 2, to the wet weather TMDL, indicates that the dry weather TMDL is lower. Therefore dry weather conditions control, as they are more stringent.

4.2 TMDL ALLOCATION RESULTS

The method used to allocate the wet weather TMDL was described in Section 3.6. Results are presented in Table IV-4.

Source of Londing	Option 1 (1)				Option 2 ⁽³⁾			
	Reach 1		Reach 2		Reach I		Reach 2	
	CBOD, (Bu/day)	NH ₂ -N (Bs/day)	CBOD, (bs/day)	NHAN (ba/day)	CBOD ₄ (Ba/day)	NH ₄ -N (Ibs/day)	CBOD, (Bs/day)	NH ₄ -N (Be/day)
Point ⁽⁹⁾ Source (PS)	0	0	953	276	250	15	723	246
Nonpoint (* Source (NPS)	616	139	1557	119	366	124	1787	149
Margin of ⁽⁵⁾ Safety (MØS)	68	15	279	44	68	15	279	44
Total ¹⁰ (TMDL)	684	154	2789	439	684	154	2789	439

Table IV-4 Allocation of Loads for the Wet Weather TMDL

Notes:

- (1) Option 1 assumes no discharge from the Coy Paper WWTF and that the Claremont WWTF is discharging at new (more stringent) effluent limits.
- (2) Option 2 assumes that the Coy Paper WWTF is discharging at its 1992 permit limits and that the Claremont WWTF is discharging at new (more stringent) effluent limits.
- (3) Point source loadings are based on the proposed maximum day discharge loadings for the Coy Paper and/or Claremont WWTFs. The Coy Paper WWTF is located at the beginning of Reach 1 and the Claremont WWTF is located at the beginning of Reach 2.
- (4) Nonpoint Source Loadings are equal to the Total TMDL minus the sum of the Point Source Loading and the Margin of Safety {i.e, NPS = Total (PS + MOS)}.
- (5) The Margin of Safety (MOS) is equal to 10 percent of the Total TMDL
- (6) Loadings shown for the Total TMDL are over and above the assumed background loading in the river upstream of each reach.
4.3 EXISTING NPS LOADING vs PROPOSED NPS TMDL

• The method used to estimate existing NPS loads due to stormwater runoff was provided in Section 3.7. Results are shown in Table IV-5.

Read	h #1	Reach #2				
CBOD ₅ lbs/day	NH3-N lbs/day	CBOD ₅ lbs/day	NH3-N lbs/day			
27	9	8	11			

 Table IV-5

 Existing NPS Loading Due to Stormwater Runoff

• A comparison of Table IV-5 to the NPS loads in Table IV-4 indicates that existing NPS loadings are well below the theoretical TMDL for NPSs. Thus the Sugar River is below its theoretical NPS loading capacity for wet weather conditions.

4.4 PRELIMINARY DISCHARGE LIMITS FOR THE CLAREMONT WWTF

Preliminary discharge limits for the Claremont WWTF for periods of warm and cold temperatures are presented in the tables below. Limits were based on dry weather conditions (i.e., river at 7Q10 low flow) as this was determined to be the controlling condition (see Section 4.1). Table IV-6 shows the proposed limits for option 1 which assumes that only the Claremont WWTF is discharging. Proposed limits for option 2 are shown in Table IV-7, which assumes that both the Coy Paper WWTF and the Claremont WWTF are discharging. With regards to these limits the following conclusions can be made.

- The proposed discharge limits for the Claremont WWTF, for either option, are more stringent than the City's current NPDES permit limits which are based on technology limits for secondary treatment.
- Based on sampling results over the past two years, it appears that the Claremont WWTF can currently meet the proposed summer limits for CBOD₅ and NH₃-N. This is believed to be primarily due to the fact that the WWTF is currently treating only 50 percent of it's design flow.
- The City may have to install a mixer or other means of meeting the proposed minimum effluent DO concentration of 7 mg/l. If this limit can not be met, additional modeling should be conducted at lower effluent DO

concentrations. This, however, would result in lower limits for CBOD₅ and/or NH₃-N.

As flows to the Claremont WWTF approach the plant's design capacity, the City may have to make future improvements to the WWTF to meet the proposed limits. There is a possibility however, that the Claremont WWTF could continue discharging at its current NPDES permit limits, if it's discharge was relocated directly to the Connecticut River (downstream of the Sugar River confluence). Additional modeling would be needed, however, to confirm this assumption.

A comparison of options 1 and 2 shows that if the Coy Paper Company is bought and the discharge is reactivated with effluent limits equal to the old NPDES permit for Coy Paper, it reduces the allowable effluent limits at the Claremont WWTF. It is recommended that the City take this into consideration if plans are made to reactivate the discharge at the Coy Paper Facility. If effluent limits are considered for the discharge at the former Coy Paper Company, which are different from those assumed in this study, additional modeling would have to be conducted to determine new limits for the Claremont WWTF.

Table IV-6OPTION #1Proposed WWTF Effluent Discharge Limits

WAWARE	Parameter		mg/l		lbs / day			
		Average Monthly	Average Weekty	Maximum Daily	Average Monthly	Average Weekly	Maxhann Daily	
Coy Paper (No discharge)	oy Paper (No scharge)							
Claremont	DO	No	less than	7.0 mg/l				
(3.94 MGD)	CBOD,	25	28	29	822	920	954	
	NH ₃ -N	6.8		8.4	223		276	

Summer (June 1 - October 31)

Winter (November 1 - May 31)

WWIEF	Parameter		mg/l		lbs / day			
		Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily	
Coy Paper (No discharge)								
Claremont	DO	No	less than	7.0 mg/l				
(3.94 MGD)	CBOD,	25	28	29	822	920	954	
	NH ₃ -N	11.4		12.3	375		404	

Table IV-7OPTION #2Proposed WWTF Effluent Discharge Limits

WWIF	Parameter		mg/l		ibs / day			
		Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily	
	Flow ⁽¹⁾			0.9 MGD				
Coy Paper (0.9 MGD)	DO	No	less than	6.0 mg/l				
	BOD ₅ ⁽¹⁾				295		300	
	NH ₃ -N	2		2			15	
Claremont	DO	No	less than	7.0 mg/l				
(3.94 MGD)	CBOD,	19	21	22	624	690	723	
	NH ₃ -N	6.3		7.4	207		243	

Summer (June 1 - October 31)

Winter (November 1 - May 31)

WAWARE	Parameter		mg/l			lbs / day	
		Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily
	Flow ⁽¹⁾			0.9 MGD	Year to show them a		
Coy Paper (0.9 MGD)	DO	No	less than	6.0 mg/l			
	BOD ₅ ⁽¹⁾				295		300
	NH,-N	2		2			15
Claremont	DO	No	less than	7.0 mg/l			
(3.94 MGD)	CBOD ₅	25	27	28	822	887	921
	NH ₃ -N	8.5		9.2	279		302

Notes:

(1) Values are based on the 1992 NPDES permit for Coy Paper. CBOD, values used in the model were assumed equal to 83 % (25/30) of the BOD.

4.5 RESULTS OF SAMPLING TO CONFIRM OTHER WATER QUALITY EXCEEDANCES ON THE 303 (d) LIST

In addition to DO, the New Hampshire 1994 303 (d) list (see Appendix A) also included the following water quality exceedances in the Sugar River.

- Copper
- Lead
- Toxics (based on failure of a Whole Effluent Toxicity (WET) test of the river water).

In the summer of 1995, sampling was conducted to confirm these violations. Results of this sampling effort are provided in Appendix F.

The results indicate no violations of copper or lead. With regard to the WET tests, failure was attributed to a naturally occurring fungus in the river, and not toxics, as originally assumed. Because no violations were found in 1995, the above violations will be removed from the State's 303(d) list of potentially impaired waters.

APPENDIX A

kurpu

STATE OF NEW HAMPSHIRE'S 1994 303 (d) LIST

WATER BODY NAME/DM/ LOCATION	USE CLASS	OVERALL USE SUPPORT AND MILES AFFECTED	DATA BASIS	ASSESSMENT BASIS	WQS VIOLATED	PROBABLE SOURCE	NDIVI SUPP MILES	OUAL USE ORT AND AFFECTED	REQUIRED ACTION AND COMMENTS	FILE # DATA SOURCE
AIREY BROOK NHR80201050-00.0100. NINCHESTER	8	PS 1.0	MONITORED	83-1MIR-3-1	D.O.	UNKNOWN	PS	1.0	INVESTIGATE SOURCE. (AROUND RTE. 10 CROSSING UPSTREAM OF ASHUELOT RIVER CONFLUENCE).	0929 1993 AMBIENT SURVEY
SUGAR RIVER NHR80104100-00.0109 CLAREMONT	B		MONITORED	W.E.T. FOR CLAREMONT WWTF	TOXICS	UNKNOWN	PS	1.0	INVESTIGATE SOURCE. WET SAMPLE FOR DILUTION WATER TAKEN 15 FEETABOVE CLAREMONT WWTF OUTFALL WHICH IS BELOW FORMER COY PAPER OUTFALL	0216 WHOLE EFFLUENT. TOXICITY TEST FOR CLAREMONT WWTF.
SUGAR RIVER NHR80104100-00.0100. NEWPORT	B		MONITORED	92-9A SGR7-1, 92-14 SGR-7-2	D.O.	UNKNOWN	PS	2.0	INVESTIGATE SOURCE. (FROM NORTH BRANCH RIVER CONFLUENCE UPSTREAM IN NEWPORT- 1.0 ML; AND FROM LONG POND BROOK CONFLUENCE UPSTREAM 1.0 ML)	0961 1992 AMBIENT SURVEY; 1992 WASTELOAD ALLOCATION STUDY
SUGAR RIVER NHR80104100-00.0100. NEWPORT	8	PS 1.2	MONITORED	92-15SGR-1-1	COPPER	UNKNOWN	PS	1.2	INVESTIGATE SOURCE. (FROM LONG POND BROOK CONFLUENCE UPSTREAM TO MAPLE ST.).	0962 1992 AMBIENT SURVEY;
SUGAR RIVER NHR80104100-00.0100. NEWPORT	B	PS 1.0	MONITORED	92-13SGR-1-1	LEAD	UNKNOWN	PS	1.0	INVESTIGATE SOURCE. (FROM SOUTH BRANCH SUGAR RIVER CONFLUENCE UPSTREAM).	0963 1992 AMBIENT SURVEY
WILD AMMONOOSUC RIVER NHR80101270-00.0100. BATH	8	PS 1.0	MONITORED	92-1WAM-2-1	ZINC	UNKNOWN	PS	1.0	INVESTIGATE SOURCE. (FROM CONFLUENCE WITH AMMONOOSUC RIVER UPSTREAM).	0931 1992-AMBIENT SURVEY

APPENDIX B

1. V.

EXISTING NPDES PERMITS

Permit No. NH0100544 Page 1 of 5

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Clean Water Act, as amended, (33 U.S.C. §§1251 et seq.; the "CWA"),

Sunapee Sewer Commission Town of Sunapee Water Pollution Control Facility

is authorized to discharge from a facility located at

Route 11 Sunapee, NH

to receiving waters named

Sugar River

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective on date of signature.

This permit and the authorization to discharge expire at midnight, five years from effective date.

This permit supersedes the permit issued on May 8, 1979.

This permit consists of 5 pages in Part I including effluent limitations, monitoring requirements, etc., and 19 pages in Part II including General Conditions and Definitions.

Signed this 17th day of April, 1986

Director

Water Management Division Environmental Protection Agency Boston, MA

Permil 191- 417]91

REGION I

PART I

Page 2 of 5 Permit No. NH0100544

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

1. During the period beginning on the effective date and lasting through expiration, the permittee is authorized to discharge from outfall serial number 001 (Treatment Plant Effluent).

Such discharges shall be limited and monitored by the permittee as specified below:

Approximation of the second sec

Effluent Charac	teristic		Discharge Li	mitations			Monitoring Rec	uirement
	Average Monthly	kg/day (lbs/d Average <u>Weekly</u>	day) Maximum Daily	Average <u>Monthly</u>	specify un Average <u>Weekly</u>	its) Maximum Daily	Measurement Frequency	Sample Type
Flow-m ³ /Day (MGD)					-		Continuous 1	recording
POD	73 (160)	109 (240)	121 (267)	30 mg/1	45 mg/1	50 mg/1	2/month ¹	8-hr comp
TSS	73 (160)	109 (240)	121 (267)	30 mg/1	45 mg/l	50 mg/1	2/month ¹	8-hr comp
Settleable Solids					0.1 m1/1	0.3 ml/l	Daily	Grab
b u				(See A.1	.a on pag	e 3)	Daily	Grab
Total Coliform				240/100ml	240/100ml	240/100ml	2/Month	Grab
Chlorine Residual				(See A.1	.f on pag	je 3)	2/Daily	Grab

Footnote

(1) Influent and effluent sampling required.

Permit No. NH0100307 Page 1 of 6

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Clean Water Act, as amended, (33 U.S.C. §§1251 et seq.; the "CWA"),

> Town of Newport (Dorr Woolen)

is authorized to discharge from the facility located at

Guild Road

to receiving waters named Sugar River

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective 30 days from date of signature.

This permit and the authorization to discharge expires at midnight, five years from date of issuance.

This permit supersedes the permit issued on July 29, 1985.

This permit consists of 6 pages in Part I including effluent limitations, monitoring requirements, etc., and 19 pages in Part II including General Conditions and Definitions.

signed this 30 day of

Director Water Management Division Environmental Protection Agency Region I Boston, MA

REGION I

Part I

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Permit No. NH0100307 Page 2 of 6

1. During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge from outfall serial number 001 -treated wastewater to the Sugar River . (See Attachment A for location).

Such discharge shall be limited and monitored by the permittee as specified below:

<u>Characteristic</u>	Dischar	me Limital	tions		Monitoring Requirements				
	kg/day Average <u>Monthly</u>	(lbs/day) Average Weekly	Maximum Daily	(Specify) Average <u>Monthly</u>	Units) Average <u>Weekly</u>	Maximum Daily	Measurement Frequency	Sample Type	
Flow (mgd) BOD TSS COD Total Chromium Total Sulfide	102 (225) 114 (250) 751 (1652) (1.47) (2.94)		205 (450) * 330 (725) 1502 (3304) (2.94) (5.88)	1.0 mgđ		Report	Continuous 1/week 1/Week 1/week 2/month 2/month	Continous Composite Composite Composite Composite Composite	
Total Phenol Oil and Grease Phosphrous Ammonia Lc ⁵⁰ (See Att B, C-NDEC (See Att 1	(1.47) see footnot 8. See footnot	e 1) rote 1)	(2.94) 100% 16.5% or c	5.67mg/1 ²		15 mg/l Report mg/l Report mg/l	2/month 1/month 1/month 2/month 1/Quarter	Composite Grab Composite Composite Composite	
pH (S.U.)	., 100a					6.5 to 8.0	1/day	Grab	

* Daily maximum BOD is limited to 3351bs/day from June 1 until October 31 each year.

The pH shall be within the range of 6.5 to 8.0 or as naturally occurs in the receiving stream (see Permit Condition I.C.1.a.)

There shall be no discharge of floating solids or visible foam in other than trace amounts.

1. The permitee shall conduct chronic and acute toxicity tests using ceriodaphnia and fathead minnows (see attachment B) once per quarter for the months of March, June, September and December. Toxicity tests shall be taken during dry weather conditions. Reporting of results shall be within 45 days of sampling, i.e. the March toxicity sample results must be submitted by May 15.

2. State certification requirement resulting from 90% of the streams assets.

Permit No. NH0000680 Application No.

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Water Pollution Control Act, as amended, (33 U.S.C. 1251 et. seq; the "Act"),

STURM, RUGER & COMPANY, INC.

is authorized to discharge from a facility located at

GUILD ROAD NEWPORT, NEW HAMPSHIRE 03773

to receiving waters named

SUGAR RIVER CLASS B

in accordance with effluent limitations, monitoring requirements and other conditions set forth in Parts I, II, and III hereof.

This permit shall become effective 30 days from date of signature

This permit and the authorization to discharge shall expire at midnight, July 1, 1978

Signed this 21stday of June, 1973

(As signed by)

John A. S. McGlennon Regional Administrator Environmental Protection Agency

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

effective date of

During the period beginning this permit and lasting through July 1, 1978 the permittee is authorized to discharge from outfall(s) serial number(s) 001 and 002

(Uncontaminated Cooling) (Water only)

7 7

70

Such discharges shall be limited and monitored by the permittee as specified below:

	Effluent Characteristic		Discharge	Monitoring Rec	quirements		
		kg/day (Daily Avg	lbs/day) Daily Max	Daily Avg	Daily Max	Measurement Frequency	Sample Type
	Flow-m ³ /Day (MGD)		a da anti- anti-anti-anti-anti-anti- anti-anti-anti-anti-anti- anti-anti-anti-anti-anti-anti- anti-anti-anti-anti-anti-anti-anti- anti-anti-anti-anti-anti-anti-anti-anti-	155(-041)		Quarter	Average
001	Temperature ^o C(^o F)				27.5(82)	41 TE	Max. of 4 Grabs
02	Flow-m ³ /Day(MGD) Temperature ^o C(^o F)			91(.024)	29 (84)	11 11 11 11	Average Max. of 4 Grabs
				Total Flow	(001 0002)		

Total Flow (001&002) Not to exceed 68,000 gpd

The pH shall not be less than 6.5 standard units nor greater than 8.0 standard units and shall be monitored one day each quarter, report range of 4 grabs

There shall be no discharge of floating solids or visible foam in other than trace amounts.	18 2 ·	ART
Samples taken in compliance with the monitoring requirements specifie 1 above shall be taken at the following location(s): Points of discharge	NHO	
The permittee shall not at any time, either alone or in conjunction with any person or persons, cause directly or indirectly the discharge of any waste into the said receiving waters except waste that has been treated in such a manner as will not lower the (lass B quality or interfere with the	10 000680	
uses assigned to said waters by the New Hampshire Legisliture (Chapter 210, Laws of 1951).		

Permit No. NH0100200 Page 1 of 8

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Clean Water Act, as amended, (33 U.S.C. §1251 et seq.; the "CWA"),

Town of Newport New Hampshire Newport Wastewater Treatment Facility

is authorized to discharge from the facility located at

Putnam Road Newport, NH 03773

to receiving waters named: the Sugar River

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective thirty (30) days from the date of issuance.

This permit and the authorization to discharge expire at midnight, five (5) years from the effective date.

This permit supersedes the permit issued on September 28, 1989.

This permit consists of 8 pages in Part I which includes effluent limitations, monitoring requirements, etc., 9 pages in Attachment A, as well as 35 pages in Part II which includes General Conditions and Definitions.

Signed this 13th day of July, 1995

wil li Fina Director

Water Management Division U.S. Environmental Protection Agency Region I Boston, Massachusetts

EFFECT VE 03/12/00 EFFECT VE 03/12/00 08/12/95

PART I

Permit No. NH0100200 Page 2 of 8

and the second s

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS:

- 1. During the period beginning on the effective date of the permit and lasting through the expiration date, the permittee is authorized to discharge from outfall serial number 001: treated domestic and municipal wastewater to the Sugar River.
- a. Such discharges shall be limited and monitored by the permittee as specified below:

Effluent CharacteristicDischarge LimitationsOtkg/day (lbs/day)1In S				her Units Decified W	Units	Monitoring Requirements		
	Average Monthly	Average <u>Weekly</u>	Maximum Daily	Average Monthly	Average <u>Weekly</u>	Maximum Daily	Measurement Frequency	Sample <u>Type</u>
Flow, MGD			<u>س من من</u>	Report		Report	Continuous	Recorder
BOD ₅	148 (325)	222 (488)	246 (542)	30 mg/l	45 mg/l	50 mg/l ¹	Weekly	Grab
TSS	148 (325)	222 (488)	246(542)	30 mg/l	45 mg/1	50 mg/ 1^{1}	Weekly	Grab
pH (standard units) ¹	na serie de la composición de la compo Composición de la composición de la comp Reference de la composición de la compo			[see Part	I.A.2. on	Page 4]	Daily	Grab
Escherichia coli ^{1,2}				126/100 ml		406/100 ml	3/Week	Grab
Total Residual Chlorine ³			Tanin da	0.092 mg/l		0.158 mg/l	Daily when in use	Grab
Whole Effluent Toxicity (LC ₅₀) ⁴ C-NOEC ⁵				an a		100% ⁴ ≥12% ⁵	Quarterly ⁶ Quarterly ⁶	Comp-24 Comp-24
Total Ammonia				Report ⁷		Report ⁷	2/Month ⁷	Grab

b. The permittee shall sample the final effluent at a location that provides a representative sample of the effluent prior to mixing with any other stream.

DESIGNATIONS OF SUPERSCRIPTS 1-7 are addressed on page 3 of the permit.

Permit No. NH0001261 Page 1 of 8

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Clean Water Act, as amended, (33 U.S.C. **§§**1251 <u>et seq</u>.; the "CWA"),

Coy Paper Company, Inc.

is authorized to discharge from a facility located at

Plains Road Claremont, NH 03743

to receiving waters named

Sugar River

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective (30) thirty days from the date of issuance.

This permit and the authorization to discharge expires (5) five years from the effective date.

This permit supersedes the permit issued on September 18, 1986.

This permit consists of eight pages in Part I including effluent limitations, monitoring requirements, etc., Attachment A, and 22 pages in Part II including General Conditions and . Definitions.

signed this 26 day of June, 1992

will Fina

Director Water Management Division Environmental Protection Agency REGION I Boston, MA

Permit No. NH0001261 Page 2 of 8

Part I

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

and the second sec

1. During the period beginning on the effective date and lasting through the expiration date the permittee is authorized to discharge from outfall serial number 001 to the Sugar River. This discharge shall be limited and monitored by the permittee as specified below:

and the second se

Effl	vent Characteristics		Discharge I		Monitoring Requirements			
		Average <u>Monthly</u> in]	Maximum <u>Daily</u> Lbs/day	Average <u>Monthly</u> in	Maximum <u>Daily</u> mg/L	Minimm Daily	Measurement Frequency	Sample Type
	Flow (mgd) ¹	Report	Report				Continuous	Recorder
BOD a	nd TSS for Production Level BOD	1 (Current Pro 295	oduction): 300	Report ⁵	Report ⁵		2/Month	24-Hour Composite
	TSS	235	350	Report ⁵	Report ⁵		2/Month	24-Hour Composite
	pH (standard units) ²		8.0	•.		6.5	Continuous	Recorder
	LC50 ³		100 %				4/Year ⁴	24-Hour Composite
	Phosphorous ⁵				Report	• • • • • • • • • • • • • • • • • • • •	4/Year	24-Hour Composite
	Monthly Production ⁶	Report					1/Quarter	Report
BOD a	nd TSS for Production Level BOD	2 (See Part I. 300 ⁷	C on page 6): 300 ⁷	Report ⁵	Report ⁵		2/Month	24-Hour Composite
	TSS	285 ⁷	350 ⁷	Report ⁵	Report ⁵		2/Month	24-Hour Composite

Footnotes: 1-7. See page 3.

There shall be no discharge of floating solids or visible foam in other than trace amounts.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following locations: Outfall 001 - Representative location of process flow to Sugar River.

NPDES Permit No. NH0101257 Page 1 of 10

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Clean Water Act, as amended, (33 U.S.C. §1251 et seq.; the "CWA"),

City of Claremont, New Hampshire

is authorized to discharge from the facility located at

Plains Road Claremont, New Hampshire

to receiving waters named

Sugar River

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

. This permit shall become effective 30 days after signature.

This permit and the authorization to discharge expire five years from effective date.

This permit supersedes permit NH0101257 issued July 29, 1986.

This permit consists of 10 pages in Part I and 22 pages in Part II including General Conditions and Definitions. Elization 5/23/92-5/23/97

Signed this 23rd day of April, 1992

Director Water Management Division U.S. Environmental Protection Agency Region I Boston, Massachusetts

Page 2 of 10 Permit No. NH0101257

Monitoring Dominoment

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

1. During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge effluent to the Sugar River from outfall serial number 001. Such discharges shall: (1) be limited and monitored by the permittee as specified below; and (2) not cause a violation of the water-quality standards of the receiving waters.

			FAIL WE DIG TOMOLIA CRIERITY				
Parameter	(lbs Average Monthly	/day) ² Maximum _Daily_	Con Average <u>Monthly</u>	centratic Average <u>Weekly</u>	ns Maximum Daily	Measurement	Sample
Flow ¹				۲۰۰۱ میلید. ۲۰۰۱ میلید ۲۰۰۱ میلید		Continuous Re	cording
ROD ¹	976	1627	30 mg/L	45 mg/L	50 mg/L ²	3 Weekly	24-hr. comp.
TSS ¹	976	1627	30 mg/L	45 mg/L	50 mg/L^2	3 Weekly	24-hr. comp.
rHI(SU) ^{1,2}	[8]	e Pa	rt I.A.	2]	n an	Daily	Grab
Escherichia coli ²			126/100 m	L 4	06/100 mL	3 Weekly	Grab
^T otal Residual Chlorine ^{2,3} Saturday, Sunday, Holiday All Other Days	5				77 µg/Ъ	See Part I.A. Daily Twice Daily	4. Grab Grab
Ammonia(NH3) ²		یں ۲۰۰۱ مربقہ کا میں مربقہ کی د	Report mg/L	,	Report mg/L	Weekly	Grab
Whole Effluent Toxicity NOEC ⁴ LC ₅₀	[8]	e Pa	rt I. A. 3 	for tes	t species.] ≥ 15% effluent ≥100% effluent	Quarterly Quarterly	24-hour comp. 24-hour comp.

Dicchanne Timitatione

Footnotes on next page.

ART I

APPENDIX C

 \cdot

-

ALLOCATION EXAMPLE - OPTION #1

Allocation example - option #1

Wet Weather TMDL					
Parameter	Reach #1	Reach #2			
CBOD, (lbs/day)	684	2789			
NH3-N lbs/day	154	439			

Option #1 - Coy Paper WWTF not in operation, Claremont WWTF operating.

Allocation for reach #1:

-

1). Determine MOS - (10%) of assets:

CBOD₅ (MOS) = $684 \text{ x} \cdot 10 = 68 \text{ lbs/day}$ NH₃-N (MOS) = $154 \text{ x} \cdot 10 = 15 \text{ lbs/day}$

2). No Point Sources (PS) in reach #1. Therefore no allocation to PS is necessary.

3). Allowable Nonpoint Source (NPS) loading is equal to remaining load.

 $CBOD_5$ (NPS) = 684 - 68 = 616 lbs/day NH₃-N (NPS) = 154 - 15 = 139 lbs/day

4). NPS loadings determined through the allocation process must be checked against actual NPS loadings based on land use.

Allocation for reach #2:

1). Determine MOS - (10%) of assets:

 $CBOD_5$ (MOS) = 2789 x .10 = 279 lbs/day NH₃-N (MOS) = 439 x .10 = 44 lbs/day

2). Claremont WWTF is the Point Source (PS) in reach #2. Based on dry weather modeling total load from Claremont WWTF is as follows:

 $CBOD_5 = 953 lbs/day$ $NH_3-N = 276 lbs/day$ 3). Allowable Nonpoint Source (NPS) loading is equal to remaining load.

CBOD₅ (NPS) = 2789 - (279 + 953) = 1557 lbs/day NH₃-N (NPS) = 439 - (44 + 276) = 119 lbs/day

4). NPS loadings determined through the allocation process must be checked against actual NPS loadings based on land use.

APPENDIX D

(Constant)

NONPOINT SOURCE LOADING CALCULATIONS

NONPOINT SOURCE LOADING CALCULATION

The calculation of the NPS loading is based on the drainage area, land use classifications, incremental portion of the summer average flow and the pollutant loadings based on land use. In this example the NPS loading will be calculated for reach 1 (Coy Paper WWTF to the Claremont WWTF).

- 1. The drainage area contributing to reach 1 was obtained from USGS topographical maps and was calculated to be 2.70 square miles.
 - Based on GIS land use maps, the drainage area partitioned into the three land use classifications as follows:
 - 0.75 square miles of urban areas (low)
 - 1.47 square miles of rural areas
 - 0.48 square miles of agricultural areas
- 3. The incremental portion of the summer average flow contributing to reach 1 was calculated to be 1.51 cfs (1.0 MGD). Section 3.4 explains various model inputs for the TMDL, one of the inputs was UPFLOW. The yield was calculated to be 0.556 cfs/square mile. Based on this yield the incremental portion of the summer average flow is calculated as follows:
 - 2.70 square miles x 0.556 cfs/square mile = 1.51 cfs

Pollutant loadings were calculated using the loadings shown in Table III-1. Therefore the weighted pollutant loading concentration was calculated in the following manner.

CBOD₅ (mg/l)

2.

4.

$$C_{NPS} = 0.75(11) + 1.47(0) + 0.48(5)$$

2.70

= 3.94 mg/l x (.8333) = 3.28 mg/l

Note ... $CBOD_s = .8333 \times BOD_s$

NH₃-N (mg/l)
$$C_{NPS} = 0.75(.5) + 1.47(.19) + 0.48(5.04)$$

2.70

= 1.14 mg/l

5. Therefore, the calculated mass loading in pounds per day is:

 $CBOD_{5} (lbs/day) = (3.28 mg/l) (1.0 MGD) (8.345)$

NH3-N (lbs/day)

-

27 lbs/day

=

H

(1.14 mg/l) (1.0 MGD) (8.345) 9 lbs/day

APPENDIX E

6971498

679414

1993

MODELING OUTPUT

wet weather

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE.. c:\model\sugar6

RIVER REACH	Sugar 1		MODELER DATE	R JHerrick 12/13/95	
COMMENTS.	Coy Paper V	WWTF to Clar	remont W	WTF	
UP FLOW (4 UP DO (mg, UP UCBOD UP NBOD (1	cfs) 150. /1) 7.3 (mg/1). 3 ng/1)5	54	DISCHAR DISCHAR DISCHAR UCBOD/C DISCHAR NBOD/NR	RGE FLOW (cfs) RGE DO (mg/l) RGE UCBOD (mg/l). CBOD5 RGE NBOD (mg/l) . H3-N	2.9 7 70 1.6 45 4.57
DILUTION 2	X 0.9	47.65034	DISCHAR DISCHAR	RGE CBOD5 (mg/l). RGE NH3-N (mg/l).	43.75 9.84682
REAERATION BOD DECAY NBOD DECAY CBOD FLUX NBOD FLUX RESPIRATION PHOTOSYNTY	N Ka 2 Kd 7 Y Kn5 Lrd 0 Nrd 0 ON R085 HESIS P 0		SOD SD SOLUBII VELOCIT WATER T STARTIN ENDING	LITY Cs TY (fps) TEMPERATURE (C) NG MILE MILE	0 8.16 .91 25 1.79 1.55
MIN. DO (' MIN. DO (' INITIAL DO INITIAL DO	75% Cs) 90% ASSETS). D MIX D DEFICIT	6.119 6.238 7.294334 .8656	INITIAI INITIAI ENDING ENDING	L CBOD (Lo) NBOD (No) CBOD (Le) NBOD (Ne)	4.2654 1.3404 3.8103 1.3296
RIVER MILE 1.79 1.778 1.766 1.755 1.744 1.733 1.722 1.71 1.698 1.686 1.674 1.663 1.652 1.641 1.63 1.652 1.641 1.63 1.619 1.608 1.597 1.586 1.575 1.564	DISTANCE (miles) 0 .012 .024 .035 .046 .057 .068 .092 .104 .116 .127 .138 .149 .16 .171 .182 .193 .204 .215 .226	DEFIC (mg/l) .8650 .887 .909 .933 .956 .977 1.001 1.021 1.044 1.065 1.084 1.105 1.13 1.151 1.172 1.192 1.215 1.254 1.276 1.296	IT) 5 1 2 4 5 8 9 9 1 1 2 2 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	DISSOLVED OXY (mg/l) 7.294334 7.272 7.25 7.226 7.203 7.181 7.158 7.137 7.115 7.093 7.071 7.05 7.093 7.071 7.05 7.028 7.008 6.986 6.967 6.944 6.923 6.904 6.883 6.863	(GEN
1.553	.237	1.31	5	6.843	

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95 INPUT FILE. c:\model\sugar6a MODELER .. JHerrick RIVER Sugar DATE 12/13/95 **REACH** 2 COMMENTS.... Claremont WWTF to the Connecticut River DISCHARGE FLOW (cfs) ... 8.28 UP FLOW (cfs) ... 152.15 DISCHARGE DO (mg/l) ... 7 UP DO (mq/1) ... 6.84 UP UCBOD (mg/1). 3.8 DISCHARGE UCBOD (mg/l). 100 1.3 UCBOD/CBOD5..... UP NBOD (mq/1). 1.6 DISCHARGE NBOD (mg/l) . 45 NBOD/NH3-N.... 4.57 DILUTION X 0.9 17.43804 DISCHARGE CBOD5 (mg/l). 62.5 DISCHARGE NH3-N (mg/l). 9.846827 SOD Sb REAERATION Ka .. 10 0.... BOD DECAY Kd ... SOLUBILITY Cs 8.16 2.4 VELOCITY (fps) NBOD DECAY Kn ... 2.1 .92 CBOD FLUX Lrd ... WATER TEMPERATURE (C)... 0 25 NBOD FLUX Nrd ... STARTING MILE 1.55 0 RESPIRATION R05 ENDING MILE 0 PHOTOSYNTHESIS P 0 MIN. DO (75% Cs)....6.119INITIAL CBOD (Lo)MIN. DO (90% ASSETS).6.192INITIAL NBOD (No)INITIAL DO MIX.....6.848258ENDING CBOD (Le)INITIAL DO DEFICIT...1.3117ENDING NBOD (Ne) 8.765 INITIAL NBOD (No) 3.5554 ENDING CBOD (Le) 6.846 ENDING NBOD (Ne) 2.864 DISTANCE RIVER DEFICIT DISSOLVED OXYGEN MILE (miles) (mg/1)(mg/1)1.55 1.3117 6.848258 0 .086 1.394 1.464 6.764 .172 1.472 1.378 6.687 .258 1.292 1.542 6.616 1.207 .343 1.61 6.549 1.122 .428 1.669 6.49 .513 1.037 1.723 6.435 .951 .599 1.773 6.387 .8649999 .685 1.819 6.34 .7789999 .771 1.86 6.299 .857 .693 1.896 6.263 .6069999 .943 1.929 6.23 .5209999 1.029 1.958 6.201 1.983 .4349999 1.115 6.177 2.005 .3499999 1.2 6.154 .2639999 1.286 2.025 6.134 2.04 .1789999 1.371 6.118 9.299994E-02 1.457 2.056 6.102 7.999897E-03 1.542 2.066 6.092 -7.800007E-02

wet water

option #1

Somence Day weather

.1

.1

.1

1.6

4.57

.0625

7.9

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95 INPUT FILE.. c:\model\sugar11 RIVER Sugar MODELER .. JHERRICK DATE 2/13/96 REACH 1 COMMENTS OPTION #1 - COY WWTF TO CLAREMONT WWTF UP FLOW (cfs) .. 39.9 DISCHARGE FLOW (cfs) ... UP DO (mg/1) ... DISCHARGE DO (mg/1) ... 7.9 DISCHARGE UCBOD (mg/l). UP UCBOD (mg/1). 3 UP NBOD (mg/1). 1.1 UCBOD/CBOD5..... DISCHARGE NBOD (mg/1) . NBOD/NH3-N..... DILUTION X 0.9 360 DISCHARGE CBOD5 (mg/l). DISCHARGE NH3-N (mg/1). REAERATION Ka ... 2.1 BOD DECAY Kd ... 7 NBOD DECAY Kn5 CBOD FLUX Lrd .. 0 NBOD FLUX Nrd ... 0 .085 RESPIRATION R ... PHOTOSYNTHESIS P 0 MIN. DO (75% Cs).... 6.119 MIN. DO (90% ASSETS). 6.298 INITIAL DO MIX..... 7.9 INITIAL DO DEFICIT... .2599 RIVER MILE 1. 1.' 1. 1.' 1. 1.' 1.' 1.' 1.6 1.6 1.6 1.6 1.6 1.6 1.6

2.188184E-02

1.597

1.586

1.575

.193

.204

.215

SOD Sb 0 SOLUBILITY Cs 8.16 VELOCITY (fps)47 WATER TEMPERATURE (C)... 25 STARTING MILE 1.79 ENDING MILE 1.55

INITIAL	CBOD	(Lo)	• • • • •	2.9927
INITIAL	NBOD	(No)		1.0974
ENDING	CBOD	(Le)		2.4054
ENDING	NBOD	(Ne)	••••	1.0804

7.383

7.357

7.331

IVER	DISTANCE	DEFICIT	DISSOLVED OXYGEN
ILE	(miles)	(mg/l)	(mg/1)
1.79	0	.2599	7.9
1.778	.012	.293	7.866
1.766	.024	.325	7.833
1.755	.035	.358	7.8
1.744	.046	.392	7.767
1.733	.057	.423	7.736
1.722	.068	.456	7.703
1.71	.08	.486	7.672
1.698	.092	.518	7.64
1.686	.104	.547	7.611
1.674	.116	.578	7.58
1.663	.127	.607	7.552
1.652	.138	.637	7.522
1.641	.149	.666	7.493
1.63	.16	.694	7.465
1.619	.171	.722	7.437
1.608	.182	.748	7.411

.775

.801

.827

option #1

Day weather

	Doy weather
*** RIVER MODEL PROGRAM ** EPA (PC BASIC, DESDORM1.BAS - I	600/6/82-004a) *** AST REVISED 3/95 Aug monthly
INPUT FILE C:\MODEL\SUGAR12	limits
RIVER Sugar REACH 2	MODELER JHerrick DATE 2/13/96
COMMENTS OPTION #1 CLAREMONT	WWTF TO THE CONNECTICUT RIVER
UP FLOW (cfs) 39.9 UP DO (mg/1) 7.331 UP UCBOD (mg/1). 2.41 UP NBOD (mg/1) . 1.08	DISCHARGE FLOW (cfs) 6.1 DISCHARGE DO (mg/l) 7 DISCHARGE UCBOD (mg/l) 40.5 UCBOD/CBOD5 1.6 DISCHARGE NBOD (mg/l) 31.3 NBOD/NH3-N 4.57
DILUTION X 0.9 6.786885	DISCHARGE CBOD5 (mg/1). 25.3125 DISCHARGE NH3-N (mg/1). 6.849015
REAERATION Ka 10.6 BOD DECAY Kd 2.4 NBOD DECAY Kn 2.1 CBOD FLUX Lrd 0 NBOD FLUX Nrd 0 RESPIRATION R05 PHOTOSYNTHESIS P 0	SOD Sb0SOLUBILITY Cs8.16VELOCITY (fps).51WATER TEMPERATURE (C)25STARTING MILE1.55ENDING MILE0
MIN. DO (75% Cs) 6.119 MIN. DO (90% ASSETS). 6.2411 INITIAL DO MIX 7.287107 INITIAL DO DEFICIT8728	INITIAL CBOD (Lo) 7.461 INITIAL NBOD (No) 5.0874 ENDING CBOD (Le) 4.7775 ENDING NBOD (Ne) 3.4443
RIVER DISTANCE DEF MILE (miles) (model) 1.55 0 .8 1.469 .081 1 1.388 .162 1 1.307 .243 1 1.226 .324 1 1.145 .405 1 1.064 .486 1 .983 .567 1 .902 .648 1 .822 .728 1 .7409999 .809 1 .661 .889 1 .5799999 .97 1 .5 1.05 1 .42 1.13 1 .3399999 1.21 1 .789999 1.371 1 .7799999 .371 1	FICITDISSOLVED OXYGEN $y/1$)(mg/1) 728 7.287107 047 7.111 2 6.958 335 6.824 449 6.71 546 6.613 629 6.529 699 6.46 754 6.404 802 6.356 841 6.318 87 6.269 904 6.255 914 6.244 919 6.241 917 6.241 912 6.247 904 6.255
1.800001E-02 1.532 1.	.893 6.266

n virgen er

1

Option # 1 Summen Day weather

NH3

MAY

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE.. C:\MODEL\SUGAR12

RIVER Sugar REACH 2 MODELER .. JHerrick DATE 2/13/96

COMMENTS.... OPTION #1 CLAREMONT WWTF TO THE CONNECTICUT RIVER

UP FLOW (cfs) 39.9 UP DO (mg/l) 7.331 UP UCBOD (mg/l). 2.41 UP NBOD (mg/l) . 1.08	DISCHARGE FLOW (cfs) 6.1 DISCHARGE DO (mg/1) 7 DISCHARGE UCBOD (mg/1) 40.5 UCBOD/CBOD5 1.6 DISCHARGE NBOD (mg/1) 38.4 NBOD/NH3-N 4.57
DILUTION X 0.9 6.78688	DISCHARGE CBOD5 (mg/1). 25.3125 DISCHARGE NH3-N (mg/1). 8.402626
REAERATION Ka10.6BOD DECAY Kd2.4NBOD DECAY Kn2.1CBOD FLUX Lrd0NBOD FLUX Nrd0RESPIRATION R05PHOTOSYNTHESIS P0	SOD Sb0SOLUBILITY Cs8.16VELOCITY (fps).51WATER TEMPERATURE (C)25STARTING MILE1.55ENDING MILE0
MIN. DO (75% Cs) 6.119	INITIAL CBOD (Lo) 7.461
MIN. DO (90% ASSETS). 6.2411	INITIAL NBOD (No) 6.0289
INITIAL DO MIX 7.28710	07 ENDING CBOD (Le) 4.7775
INITIAL DO DEFICIT8728	ENDING NBOD (Ne) 4.0817
RIVER DISTANCE DI MILE (miles) (m	SFICIT DISSOLVED OXYGEN ng/l) (mg/l)
1.55 0	.8728 7.287107
1.469 .081 1	L.065 7.093
1.388 .162 1	L.235 6.924
1.307 .243	L.383 6.776
	L.508 6.651
1.145 .405	L.616 6.542
1.064 .486	L./UY 6.449
. 705 . 507 907 648	L./0/ L.85 6.309
822 728	6.309
.7409999 .809	L.948 6.211
.661 .889	6.178
.5799999 .97	2.006 6.153
.5 1.05	6.137
.42 1.13	2.034 6.125
.3399999 1.21	2.039 6.119 touse + DD
.2589999 1.291	6.118
.1/89999 1.371	6.123
プ、/ソフソン55-U2 1 AFD (C 12
1 800001F-02	0.13
1 520 1 520	C 018
1.33 4	C.VIO

6.132

6.144

	and the second se				
					1 41
				0p	tion -1
				4	ummen
					Destaura
	NODDI DDOGDAN	++ 353 (60)	10100 004-1 4		y westow
DC DAG	MODEL PROGRAM	** 5PA (600 1 BAC - 1.89	/0/02-004d) • DEVITOEN 3/05		an an an tha an tha tha an tha an Tha an tha an
FC DAD	IC, DESDORM	1.DAD - DAD.	L KGV10BD 5/95	•	MAI
INPUT FILE	C:\MODEL\S	UGAR12			
ana an an an 1 Daoine an Aonaichte					(GOD
RIVER	Sugar		MODELER JH	Ierrick	. .
REACH			DATE 2/	13/96	
COMMENTS	OPTTON #1	CLAREMONT W	TTE TO THE CON	NECTICUT R	TVER
UP FLOW (c	fs) 39.9		DISCHARGE FLO)W (cfs)	6.1
UP DO (mg/	1) 7.33	1	DISCHARGE DO	(mg/1)	7
UP UCBOD (mg/1). 2.41		DISCHARGE UCH	30D (mg/l).	46.85
UP NBOD (m	g/1). 1.08		UCBOD/CBOD5.	· · · · · · · · · · · · · · · · · · ·	1.6
			DISCHARGE NEC	(mg/1).	31.3
			NBOD/NHS-N	• • • • • • • • • • •	4.0/
DILUTION X	0.9	6.786885	DISCHARGE CBC	DD5 (mg/1)	29.28125
			DISCHARGE NHE	3-N (mg/1).	6.849015
REAERATION	Ka 10.6		SOD Sb		0
BOD DECAY	Kd 2.4		SOLUBILITY Ca	§	8.16
CHOD FILLY	$\mathbf{M} \mathbf{I} \cdot \mathbf{A} = \mathbf{M} \mathbf{A} \mathbf{I} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$		WATED TEMPER		.51
NBOD FLUX	Nrd 0		STARTING MILL	$\frac{10}{10}$	20
RESPIRATIO	N R 05		ENDING MILE		0
PHOTOSYNTH	ESIS P 0				
	a da ang sa da sa				
MIN. DO (7	5% Cs)	6.119	INITIAL CBOD	(LO)	8.3031
MIN. DO (9	U% ASSETS).	6.2411	INITIAL NBOD	(NO)	5.0874
INITIAL DO	MIX	/.28/10/ 0720	ENDING CEOD	(Le)	5.3168
INITIAL DO	DBFIGII	.0/20	FUDING NDOD	(we)	3.4443
RIVER	DISTANCE	DEFIC	IT DI	SSOLVED OX	YGEN
MILE	(miles)	(mg/1)		(mg/1)	
1.55	0	.8728	3	7.287107	
1.469	.081	1.06	5	7.093	
1.388	.162	1.23)	6.923	
1.307	243	1.38.	3 3	6.776	
1.145	405	1.50	2 2 - Angeler Angeler (1997)	6 541	
1.064	.486	1.71	2	6.447	
.983	.567	1.788	3 . 1	6.37	
.902	.648	1.85	L	6.307	
.822	.728	1.900	5	6.253	
.7409999	.809	1.948	3	6.211	
.001 5700000	.009	1.98	4	6.1F2	
5		2.000	uria References de la companya	6 137	
.42	1.13	2.034	1	6.125	
.3399999	1.21	2.03)	6.119	· + _
.2589999	1.291	2.039	€	6.119	- P0
.1789999	1.371	2.03	5	6.125	
9.799993E	-02				

-

2.016

2.026

1.452

1.532

1.800001E-02

Option HI Winten Day weather *** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** DESDORM1.BAS - LAST REVISED 3/95 PC BASIC, INPUT FILE.. C:\MODEL\SUGARW1 MODELER .. JHERRICK RIVER Sugar REACH DATE 2/13/96 1 COMMENTS OPTION #1 - COY WWTF TO CLAREMONT WWTF DISCHARGE FLOW (cfs) .. 39.9 UP FLOW (cfs)1 DISCHARGE DO (mg/l) ... UP DO (mg/1) ... 9.65 7.9 UP UCBOD (mg/1). DISCHARGE UCBOD (mg/1). .1 3 UP NBOD (mg/1) . 1.1 UCBOD/CBOD5.... 1.6 DISCHARGE NBOD (mg/1) . .1 NBOD/NH3-N.... 4.57 DILUTION X 0.9 DISCHARGE CBOD5 (mg/l). 360 .0625 DISCHARGE NH3-N (mq/1). 2.188184E-02 REAERATION Ka .. 1.66 SOD Sb 0 SOLUBILITY Cs BOD DECAY Kd ... 5.56 9.964 NBOD DECAY Kn ... VELOCITY (fps)47 .32 CBOD FLUX Lrd ... 0 WATER TEMPERATURE (C).. 15 NBOD FLUX Nrd ... 0 STARTING MILE 1.79 RESPIRATION R ... ENDING MILE085 1.55 PHOTOSYNTHESIS P 0 MIN. DO (75% Cs).... 7.472 INITIAL CBOD (Lo) 2.9927 7.6907 MIN. DO (90% ASSETS). INITIAL NBOD (No) 1.0974 INITIAL DO MIX..... ENDING CBOD (Le) 9.645624 2.516 INITIAL DO DEFICIT... .3183 ENDING NBOD (Ne) 1.0864 RIVER DISTANCE DEFICIT DISSOLVED OXYGEN MILE (miles) (mq/1)(mq/1).3183 9.645624 1.79 0 .344 1.778 .012 9.619 1.766 .024 .371 9.592 1.755 .035 .395 9.567 1.744 .046 .422 9.541 1.733 .057 .446 9.517 .474 1.722 .068 9.489 .08 .497 1.71 9.465 1.698 .092 . 523 9.439 1.686 .104 .549 9.414 9.392 1.674 .571 .116 1.663 .127 .596 9.368 .138 1.652 . 62 9.343 .643 9.319 1.641 .149 .16 1.63 .666 9.297 1.619 .171 .689 9.274 1.608 .182 .711 9.252 1.597 .193 .733 9.229 .204 .757 9.206 1.586

.777

9.185

1.575

.215

Option #1 Winten Day weather

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE. c:\model\sugarw2

RIVER Sugar REACH 2 MODELER .. JHerrick DATE 2/13/96

COMMENTS.... OPTION #1 CLAREMONT WWTF TO THE CONNECTICUT RIVER

	UP FLOW (cf UP DO (mg/] UP UCBOD (n UP NBOD (mg	Es) 39.9 L) 9.185 ng/l). 2.516 g/l) . 1.08	5	DISCHARGE FL DISCHARGE DO DISCHARGE UC UCBOD/CBOD5. DISCHARGE NB NBOD/NH3-N	OW (cfs) (mg/l) BOD (mg/l) . OD (mg/l) .	6.1 7 40 1.6 52 4.57
	DILUTION X	0.9	6.786885	DISCHARGE CB DISCHARGE NH	OD5 (mg/1). 3-N (mg/1).	25 11.37856
	REAERATION BOD DECAY H NBOD DECAY CBOD FLUX I NBOD FLUX M RESPIRATION PHOTOSYNTH	Ka 8.4 Kd 1.91 Kn 1.67 Lrd 0 Nrd 0 N R .05 ESIS P 0		SOD Sb SOLUBILITY C VELOCITY (fp WATER TEMPER STARTING MIL ENDING MILE	ss) s) ATURE (C) E	0 9.964 .51 15 1.55 0
	MIN. DO (75 MIN. DO (90 INITIAL DO INITIAL DO	5% Cs) 0% ASSETS). MIX DEFICIT	7.472 7.6442 8.89525 1.0687	INITIAL CBOD INITIAL NBOD ENDING CBOD ENDING NBOD	(Lo) (No) (Le) (Ne)	7.4867 7.8324 5.2508 5.7436
	RIVER	DISTANCE	DEFIC	IT D	ISSOLVED OXYG	EN
	MILE	(miles)	(mg/1)	(mq/1)	
	1.55	0	1.06	87	8.89525	
	1.469	.081	1.23	6	8.726	
	1.388	.162	1.38	9	8.574	an an an an an an Art
	1.307	.243	1.52	7	8.435	
	1.226	.324	1.64	9	8.314	
6 - 4 1	1.145	.405	1.75	6	8.206	
	1.064	.486	1.85	1	8.112	
	.983	.567	1.93	5	8.028	
	.902	.648	2.00	8	7.955	
	.822	.728	2.07	2	7.891	
	.7409999	.809	2.12	5	7.837	
	.661	.889	2.17	3	7.79	
	.5799999	.97	2.21		7.752	
	.5	1.05	2.24	3	7.72	
	.42	1.13	2.26	9	7.693	
	.3399999	1.21	2.29	The second s	7.672	
	.2589999	1.291	2.30	6	7.656	
	.1789999	1.371	2.31	6	7.646	
	9.799993E	-02		.≂ The state of the state of t		an an an taon a Taon an taon an t
		1.452	2.32	2	7.64	
	1.800001R	-02				
		1.532	2.32	5	7.637	
				-	e e www.e	

Option #1 Winten Dry Weather

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE. c:\model\sugarw2

RIVER Sugar REACH 2	MOD) DAT	ELER JHerrick E 2/13/96	
COMMENTS OPTION #1 C	LAREMONT WWTF	IO THE CONNECTICUT R	IVER
UP FLOW (cfs) 39.9	DIS	CHARGE FLOW (cfs)	6.1
UP DO (mg/1) 9.185	DIS	CHARGE DO (mg/1)	n a n 2 2 a
UP UCBOD $(mg/1)$. 2.516	DIS	CHARGE UCBOD (mg/1).	46
UP NBOD $(mg/1)$ 1.08	UCB	OD/CBOD5	1.6
······································	DIS	CHARGE NBOD (mg/1)	56
	NBO	D/NH3-N	4.57
DILUTION X 0.9	6.786885 DIS	CHARGE CBOD5 (mg/1).	28.75
	DIS	CHARGE NH3-N (mg/1).	12.25383
REAERATION Ka 8.4	SOD	Sb	0
BOD DECAY Kd 1.91	SOL	UBILITY Cs	9.964
NBOD DECAY Kn 1.67	VEL	OCITY (fps)	.51
CBOD FLUX Lrd 0	WAT	ER TEMPERATURE (C)	15
NBOD FLUX Nrd 0	STA	RTING MILE	1.55
RESPIRATION R05	END	ING MILE	0
PHOTOSYNTHESIS P 0			
MIN. DO (75% Cs)	7.472 INI	TIAL CBOD (Lo)	8.2823
MIN. DO (90% ASSETS).	7.6442 INI	FIAL NBOD (No)	8.3628
INITIAL DO MIX	8.89525 END	ING CBOD (Le)	5.8088
INITIAL DO DEFICIT	1.0687 END	ING NBOD (Ne)	6.1326
RIVER DISTANCE	DEFICIT	DISSOLVED OX	YGEN
MILE (miles)	(mg/l)	(mg/1)	
1.55 0	1.0687	8.89525	
1.469 .081	1.259	8.703	
1.388 .162	1.432	8.531	
1.307 .243	1.587	8.375	
1.226 .324	1.725	8.238	
1.145 .405	1.848	8.114	
1.064 .486	1.955	8.007	
.983 .567	2.052	7.911	an an an tha suite data an Tha an taon an an tao an tao
.902 .648	2.135	7.828	
.822 .728	2.209	7.754	
.7409999 .809	2.272	7.691	
.661 .889	2.325	7.637	
.5/99999 .97	2.309	7.593	
.J 1.UJ 1.12	2.40/	7 530 7 534	
.74 1.13	2.430	1.J44 7 ¢	
2589999 1 291	2.405	7.J 7 AQ	
1789999 1 371	2.406	7 467	
9.7999938-02	2.330	//	
1.452	2.504	7.458	
1.800001E-02			
1.532	2.509	7.453	
Option # 2 Sommer Dry westher

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE.. C:\MODEL\SUGAR21

RIVER Sugar REACH 1		MODELER JHerrick DATE 2/13/96	
COMMENTS OPTION #2 (COY WWTF TO	CLAREMONT WWTF	
UP FLOW (cfs) 39.9 UP DO (mg/1) 7.9 UP UCBOD (mg/1). 3 UP NBOD (mg/1) . 1.1		DISCHARGE FLOW (cfs) DISCHARGE DO (mg/1) DISCHARGE UCBOD (mg/1). UCBOD/CBOD5 DISCHARGE NBOD (mg/1) . NBOD/NH3-N	1.39 6 53 1.6 9 4.57
DILUTION X 0.9	26.73453	DISCHARGE CBOD5 (mg/l). DISCHARGE NH3-N (mg/l).	33.125 1.969365
REAERATION Ka2.1BOD DECAY Kd7NBOD DECAY Kn.5CBOD FLUX Lrd0NBOD FLUX Nrd0RESPIRATION R.085PHOTOSYNTHESIS P0		SOD Sb SOLUBILITY Cs VELOCITY (fps) WATER TEMPERATURE (C) STARTING MILE ENDING MILE	0 8.16 .47 25 1.79 1.55
MIN. DO (75% Cs) MIN. DO (90% ASSETS). INITIAL DO MIX INITIAL DO DEFICIT	6.119 6.298 7.836038 .3239	INITIAL CBOD (Lo) INITIAL NBOD (No) ENDING CBOD (Le) ENDING NBOD (Ne)	4.6832 1.3659 3.7642 1.3447
RIVERDISTANCEMILE(miles)1.7901.778.0121.766.0241.755.0351.744.0461.733.0571.722.0681.71.081.698.0921.686.1041.674.1161.663.1271.652.1381.641.1491.63.161.619.1711.608.1821.597.1931.586.2041.575.2151.564.226	DEFIC (mg/1 .323 .372 .423 .472 .521 .569 .616 .663 .709 .754 .8 .843 .843 .843 .93 .972 1.01 1.05 1.09 1.13 1.17 1.21	IT DISSOLVED OXYG (mg/1) 9 7.836038 7.786 7.786 7.686 7.638 7.59 7.542 7.496 7.449 7.404 7.359 7.315 7.272 7.23 7.315 7.272 7.23 7.187 3 7.145 5 7.104 6 7.063 4 7.024 4 6.986 3 6 946	EN
1 553 237	1 25	6 908	

option HZ sommen Day weather

6.1

31.5

1.6

4.57

6.345733/

29

0

8.16

1.55

7.3655

4.8655

4.7164

3.2941

.51

25

0

7

Hartery

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE.. C:\MODEL\SUGAR22 MODELER .. JHerrick RIVER Sugar DATE 2/13/96 REACH 2 COMMENTS.... OPTION #2 CLAREMONT WWTF TO THE CONNECTICUT RIVER DISCHARGE FLOW (cfs) ... UP FLOW (cfs) ... 41.29 UP DO (mq/1) ... DISCHARGE DO (mg/1) ... 6.908 UP UCBOD (mg/1). 3.8 DISCHARGE UCBOD (mg/1). UP NBOD (mg/1). UCBOD/CBOD5.... 1.3 DISCHARGE NBOD (mg/1) . NBOD/NH3-N.... DILUTION X 0.9 6.991967 DISCHARGE CBOD5 (mg/1). (19.6875) DISCHARGE NH3-N (mq/1). REAERATION Ka ... 10.6 SOD Sb BOD DECAY Kd ... 2.4 SOLUBILITY Cs NBOD DECAY Kn ... VELOCITY (fps) 2.1 CBOD FLUX Lrd ... 0 WATER TEMPERATURE (C)... NBOD FLUX Nrd ... 0 STARTING MILE RESPIRATION R05 ENDING MILE PHOTOSYNTHESIS P 0 INITIAL CBOD (Lo) MIN. DO (75% Cs).... 6.119 6.1988 INITIAL NBOD (No) MIN. DO (90% ASSETS). ENDING CBOD (Le) INITIAL DO MIX..... 6.919842 INITIAL DO DEFICIT... 1.2401 ENDING NBOD (Ne) DISTANCE RIVER DEFICIT DISSOLVED OXYGEN MILE (miles) (mq/1)(mg/1)1.55 0 1.2401 6.919842 1.469 .081 1.373 6.786 1.388 1.486 .162 6.672 .243 1.307 1.587 6.572 1.226 1.671 .324 6.488 1.145 .405 1.74 6.42 1.797 1.064 .486 6.361 .983 .567 1.846 6.313 .902 .648 1.883 6.276 .728 .822 1.912 6.246 .809 .7409999 1.934 6.225 .889 .661 1.948 6.211 .5799999 .97 1.957 6.203 6.199 tranget DO

1.96

1.958

1.953

1.945

1.932

1.917

1.901

6.2

6.205

6.214

6.226

6.241

6.258

.5

.42

.3399999

.2589999

.1789999

9.79993E-02

1.800001E-02

1.05

1.13

1.21

1.371

1.291

1.452

1.532

NHDES-WSPCD-96-5

SUGAR RIVER TOTAL MAXIMUM DAILY LOAD STUDY

STATE OF NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES 6 HAZEN DRIVE CONCORD, N.H. 03301

ROBERT W. VARNEY COMMISSIONER

G. DANA BISBEE ASSISTANT COMMISSIONER

EDWARD J. SCHMIDT, P.E., Ph.D., DIRECTOR WATER SUPPLY AND POLLUTION CONTROL DIVISION

Report Prepared by: James A. Herrick, P.E. Sanitary Engineer

MARCH 1996

Printed on Recycled Paper

Option H2 summen Day weather

***	RIVER MODEL	PROGRAM ** EF	A	(600/6/82-004a) ***
	PC BASIC,	DESDORM1.BAS	<u></u>	LAST REVISED 3/95

MAC (8005

TNPIT	FILE	 - C • \	MODELV	SUGAR22
*****		 · · · ·		

RIVER Sugar REACH 2	MODELER J DATE 2	Herrick /13/96	
COMMENTS OPTION #2 CLAR	SMONT WWTF TO THE CO	NNECTICUT RIVER	
UP FLOW (cfs) 41.29	DISCHARGE FL	OW (cfs) 6.1	
UP DO (mg/1) 6.908	DISCHARGE DO	(mg/l) 7	
UP UCBOD $(mg/1)$. 3.8	DISCHARGE UC	BOD (mg/l). 36	
UP NBOD $(mg/1)$. 1.3	UCBOD/CBOD5.	1.6	
	DISCHARGE NB	OD (mg/1) . 29	
	NBOD/NH3-N	4.57	
DILUTION X 0.9 6.9	91967 DISCHARGE CB	OD5 (mg/1) 22.5	N
	DISCHARGE NH	3-N (mg/1)(. 6.34573	13
REAERATION Ka 10.6	SOD Sb	0	
BOD DECAY Kd 2.4	SOLUBILITY C	s 8.16	
NBOD DECAY Kn 2.1	VELOCITY (fp	s)51	
CBOD FLUX Lrd 0	WATER TEMPER	ATURE (C) 25	
NBOD FLUX Nrd 0	STARTING MIL	E 1.55	
RESPIRATION R05	ENDING MILE	0	
PHOTOSYNTHESIS P 0			
MIN. DO (75% Cs) 6.1	19 INITIAL CBOD	(Lo) 7.9447	
MIN. DO (90% ASSETS). 6.1	988 INITIAL NBOD	(No) 4.8655	· · ·
INITIAL DO MIX 6.9	19842 ENDING CBOD	(Le) 5.0873	
INITIAL DO DEFICIT 1.2	401 ENDING NBOD	(Ne) 3.2941	
RIVER DISTANCE	DEFICIT D	ISSOLVED OXYGEN	
MILE (miles)	(mg/1)	(mg/1)	
1.55 0	1.2401	6.919842	
1.469 .081	1.384	6.774	
1.388 .162	1.51	6,649	
1.307 .243	1.62	6.539	
1.226 .324	1./12	6.447	
1.145 .405	1.788	6.37	
1.004 .400	1.007	6.3U4	
.903 .507	1.907	C 21	
. JUZ .040 900 700	1 007	0.21 6 177	
7/0000 900	1,903	0.177 6 150	
661 889	2.000	6 134	
5799999 97	2 036	6 123	
5 1 05	2.04	5 118 - Level DC	2
42 1 13	2.042	6 118 2 700	
3399999 1 21	2.038	6.121	
.2589999 1.291	2.029	6.13	
.1789999 1.371	2.017	6.142	
9.799993E-02			
1.452	2.003	6.156	
1.800001E-02			
1.532	1.986	6.173	

option #2 sommer Day weather *** RIVER MODEL PROGRAM ** BPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95 MAX INPUT FILE. C:\MODEL\SUGAR22 NHZ MODELER .. JHerrick RIVER Sugar DATE 2/13/96 COMMENTS.... OPTION #2 CLAREMONT WWTF TO THE CONNECTICUT RIVER UP FLOW (cfs) ... 41.29 DISCHARGE FLOW (cfs) ... 6.1 6.908 DISCHARGE DO (mg/l) ... 7 DISCHARGE UCBOD (mg/l). UP UCBOD (mg/1). 3.8 31.5 1.3 UCBOD/CBOD5..... 1.6 DISCHARGE NBOD (mg/1) . 34 NBOD/NH3-N..... 4.57 DILUTION X 0.9 6.991967 DISCHARGE CBOD5 (mg/1). 19.6875 DISCHARGE NH3-N (mg/1). 7.439825 REAERATION Ka .. 10.6 SOD Sb 0 SOLUBILITY Cs 8.16 2.4 VELOCITY (fps) 2.1 .51 WATER TEMPERATURE (C)... 0 25 0 STARTING MILE 1.55 ENDING MILE05 0 0 MIN. DO (75% Cs).... 6.119 INITIAL CBOD (Lo) 7.3655 6.1988 MIN. DO (90% ASSETS). INITIAL NBOD (No) 5.5091 INITIAL DO MIX..... 6.919842 ENDING CBOD (Le) 4.7164 1.2401 ENDING NBOD (Ne) INITIAL DO DEFICIT... 3.7298 DISTANCE DEFICIT DISSOLVED OXYGEN (miles) (mg/1)(mg/1)010040 0401

1.00	U	1.2401	6.919842
1.469	.081	1.386	6.773
1.388	.162	1.51	6.649
1.307	.243	1.62	6.539
1.226	.324	1.712	6.447
1.145	.405	1.789	6.37
1.064	.486	1.853	6.306
.983	.567	1.906	6.253
.902	.648	1.948	6.211
.822	.728	1.981	6.177
.7409999	.809	2.006	6.152
.661	.889	2.023	6.135
.5799999	.97	2.036	6.123 ()()
.5	1.05	2.041	6.118 - tanget
.42	1.13	2.041	6.118
 .3399999	1.21	2.036	6.123
.2589999	1.291	2.029	6.13
.1789999	1.371	2.017	6.142
9.79993E-0	02 , 11, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14		
	1.452	2.003	6.156
1.800001E-0	02		
	1.532	1.986	6.172

REACH

UP DO (mg/1) ...

UP NBOD (mg/1).

BOD DECAY Kd ...

NBOD DECAY Kn ...

CBOD FLUX Lrd ...

NBOD FLUX Nrd ...

RESPIRATION R ...

PHOTOSYNTHESIS P

 \mathbf{a}

RIVER

MILE

1

option #2 Winter Dry weather

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE.. C:\MODEL\SUGRW21

RIVER Sugar REACH 1

MODELER .. JHerrick DATE 2/13/96

COMMENTS.... OPTION #2 COY WWTF TO CLAREMONT WWTF

UP FLOW (UP DO (mg, UP UCBOD UP NBOD (1	cfs) 39.9 /1) 9.65 (mg/1). 3 mg/1). 1.1		DISCHARGE FLOW (cfs) DISCHARGE DO (mg/l) DISCHARGE UCBOD (mg/l). UCBOD/CBOD5 DISCHARGE NBOD (mg/l) . NBOD/NH3-N	1.39 6 53 1.6 9 4.57
DILUTION	X 0.9	26.73453	DISCHARGE CBOD5 (mg/l). DISCHARGE NH3-N (mg/l).	33.125 1.969365
REAERATIO BOD DECAY NBOD DECAY CBOD FLUX NBOD FLUX RESPIRATIO PHOTOSYNT	N Ka 1.66 Kd 5.56 Y Kn32 Lrd 0 Nrd 0 ON R085 HESIS P 0		SOD Sb SOLUBILITY Cs VELOCITY (fps) WATER TEMPERATURE (C) STARTING MILE ENDING MILE	0 9.964 .47 15 1.79 1.55
MIN. DO (MIN. DO (INITIAL DO INITIAL DO	75% Cs) 90% ASSETS). 0 MIX 0 DEFICIT	7.472 7.6907 9.527124 .4368	INITIAL CBOD (Lo) INITIAL NBOD (No) ENDING CBOD (Le) ENDING NBOD (Ne)	4.6832 1.3659 3.9372 1.3523
RIVER MILE 1.79 1.778	DISTANCE (miles) 0 .012	DEFIC: (mg/1) .4368 .474	TT DISSOLVED OXY0 (mg/l) 3 9.527124 9.488	gen
1.766 1.755	.024 .035	.514	9.448 9.409	

1.766	.024	.514	9.448	÷
1.755	.035	.554	9.409	
1.744	.046	.592	9.371	
1.733	.057	.63	9.333	
1.722	.068	.669	9.295	
1.71	.08	.704	9.258	
1.698	.092	.742	9.22	
1.686	.104	.78	9.184	
1.674	.116	.816	9.147	
1.663	.127	.851	9.111	
1.652	.138	.887	9.076	
1.641	.149	.921	9.042	
1.63	.16	.955	9.007	
1.619	.171	.99	8.973	
1.608	.182	1.024	8.939	•
1.597	.193	1.056	8.906	
1.586	.204	1.09	8.873	
1.575	.215	1.121	8.842	
1.564	.226	1.154	8.809	
1.553	.237	1.185	8.777	

		$\int_{\Omega} dx = \int_{\Omega} \frac{dx}{dx} =$	
titerates			
(man)			
한 한 것 것 아내는 것 것 나는 아내	*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) ***	
	PC BASIC, DESDORM1.BAS - L	AST REVISED 3/95	
	INDIFF FILE g.\model\sugru22		
制度 - 25 行動 - 15名[147]	INFOI FILLS. C. (MOUEL (BUGL#22		
	RIVER Sugar	MODELER JHerrick	
	REACH 2	DATE 2/13/96	
an de la composition de la composition En la composition de la	COMMENTS OPTION #2 CLAREMONT	WWTF TO THE CONNECTICUT RIV	VER
	$IID EIOW (afa) \qquad 41.20$	DICCUDDCE ELON (afa)	C 1
	$\frac{\text{UP FLOW}(CIS)}{\text{UP DO}(ma/1)} = 8.777$	DISCHARGE FLOW (CIS)	0.⊥ 7
-	IIP IICBOD (mg/1) 3 94	DISCHARGE LICBOD (mg/1)	46
	UP NBOD $(mg/1)$. 1.35	UCBOD/CBOD5	1.6
		DISCHARGE NBOD (mg/1)	42
~~		NBOD/NH3-N	4.57
			and a second
	DILUTION X 0.9 6.991967	DISCHARGE CBOD5 (mg/(1).	28.75
		DISCHARGE NH3-N (mg/1)	9.190372
		רח <u>פ</u> א	
	BOD DECAY Kd 1 91	SOLUBILITY Cs	9 964
	NBOD DECAY Kn . 1.67	VELOCITY (fps)	.51
	CBOD FLUX Lrd 0	WATER TEMPERATURE (C)	15
	NBOD FLUX Nrd 0	STARTING MILE	1.55
	RESPIRATION R05	ENDING MILE	0
	PHOTOSYNTHESIS P 0		
() ()	MIN. DU (753 CS) $7.4/2$	INITIAL CBOD (LO)	9.3539
	$\frac{MIN}{100} = \frac{100}{100} = $	ENDING CBOD (Le)	6.5644
	INITIAL DO DEFICIT 1.4157	ENDING NBOD (Ne)	4.827
1997			
	RIVER DISTANCE DEF	ICIT DISSOLVED OXYC	BEN
	MILE (miles) (mg	/1) (mg/1)	
	1.55	4157 8.548266	
	1.469 .081 1.	572 8.392	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/1 8.253	
la de la companya de	1,307 .243 1. 1 226 324 1	0.120 946 9.017	
	1.145 405 2	042 7 92	
	1.064 .486 2.	127 7.836	신 문제 것 같아?
	.983 .567 2.	2 7.762	
	.902 .648 2.	263 7.699	
	.822 .728 2.	32 7.642	
	.7409999 .809 2.	365 7.598	
	.661 .889 2.	404 7.559	
사람이 가격한 것이 같다. 수많은 것이 있는 것이 같다.	.5/99999 .97 2.	436 7.527	
	42 1 13 2.	10 / .DU3 48 7 492	
	3399999 1 21 2	494 7 468	
	.2589999 1.291 2.	503 7.46	
	.1789999 1.371 2.	509 7.454	
	9.799993E-02		
	1.452 2.	509 7.454	
n an	1.800001E-02		
	1.532	506 7.456	
化复合合物化合合 化合金			

option #2 water Dry wester

*** RIVER MODEL PROGRAM ** EPA (600/6/82-004a) *** PC BASIC, DESDORM1.BAS - LAST REVISED 3/95

INPUT FILE.. c:\model\sugrw22

MODELER .. JHerrick RIVER Sugar REACH DATE 2/13/96 2 COMMENTS.... OPTION #2 CLAREMONT WWTF TO THE CONNECTICUT RIVER UP FLOW (cfs) ... 41.29 DISCHARGE FLOW (cfs) ... 6.1 **UP DO (mg/1)** ... DISCHARGE DO (mg/l) ... 8.777 7 UP UCBOD (mg/1). 3.94 DISCHARGE UCBOD (mg/l). 40 UP NBOD (mg/1). 1.35 UCBOD/CBOD5..... 1.6 DISCHARGE NBOD (mg/l) . 39 NBOD/NH3-N..... 4.57 DILUTION X 0.9 6.991967 DISCHARGE CBOD5 (mg/1) (25 DISCHARGE NH3-N (mg/1). 8-533916 SOD Sb REAERATION Ka ... 8.4 0 SOLUBILITY Cs BOD DECAY Kd ... 1.91 9.964 NBOD DECAY Kn ... 1.67 VELOCITY (fps)51 CBOD FLUX Lrd ... 0 WATER TEMPERATURE (C)... 15 0 - -STARTING MILE NBOD FLUX Nrd ... 1.55 ENDING MILE RESPIRATION R05 0 PHOTOSYNTHESIS P 0 7.472 MIN. DO (75% Cs).... INITIAL CBOD (Lo) 8.5816 MIN. DO (90% ASSETS). 7.6034 INITIAL NBOD (No) 6.1962 INITIAL DO MIX..... 8.548266 ENDING CBOD (Le) 6.0187 INITIAL DO DEFICIT... 1.4157 ENDING NBOD (Ne) 4.5438 RIVER DISTANCE DEFICIT DISSOLVED OXYGEN MILE (miles) (mg/1)(mq/1)1.55 1.4157 8.548266 0 1.469 .081 1.552 8.411 1.672 1.388 .162 8.29 1.307 .243 1.781 8.182 1.226 .324 1.878 8.085 .405 1.963 1.145 8 7.929 1.064 .486 2.033 .983 .567 2.098 7.865 .902 .648 2,151 7.811 .822 .728 2.2 7.763 .7409999 2.237 7.725 .809 .661 .889 2.269 7.693 .5799999 .97 2.296 7.667 .5 1.05 2.315 7.648 .42 1.13 2.332 7.631 .3399999 2.342 7.621 1.21 .2589999 1.291 2.348 7.615 7.612 .1789999 1.371 2.351 9.79993E-02 1.452 2.348 7.614 1.800001E-02 1.532 2.345 7.618

APPENDIX F

2

-

SAMPLING RESULTS

ID# 225.6

FY 1995 AMBIENT WATER QUALITY MONITORING PROGRAM FIELD NOTES FORM

DATE: 7/27/ 95 SAMPLE ROUND #: 1 2 3 RIVER NAME (s) : Sugar FIELD CREW: Heathy & Jason WEATHER: Hot + Humid CLASS: A B ***** Station DO/Temp Conductivity рH Parameters 50 1-Sqr 8.5/255 142 7.4 :25 9A-Sog 6.9/24 / 121 6.9 6.9 (mpb, 2n, Hard (13T-Sgr) 6.9 Cu, Pb, 2n (13D-Sgr) 1355gr 28.03.0/ 111 13 D-Sqr) 51 10 145gr7,8/23/ 112 6.8 155gr 3 80/24 102 6.8 Cuipbizn, Hard (15TSqr) Cuipbizn (15 D Sqr) 15DSqrJ Co PB 3. Hall ,004 2.005 2.025 17.1 135 13D 40025 6.005 0.036 17.1 15T 6.0025 61005 6.025 16.1 15D LOOZS LOOS (.)32; 10 E.Coli X10-18 **TKN-35** Alk- 58 Al-40 NH3-36 Turb-68 Vcu-46NO3-37 TS- 70 Pb-48 TSS- 72 TP -39 √2n-57 Hard-62 BOD5-31

	N.H.D. horized	E.S. Lab Analytic Signatur	coratory cal Resulte:	Services Lts			DECEIVE N DEC - 8 1995							
	Sa Colle Cl Des EPA - Bi	ample Id: sct Date: Sampler lient Id: Locator: Site: scription Comments llable #	L12417 27-JUL KENDALJ IN HOUS 15B-WII WINNIPH WQ-106 * 05-0022	1 95 2, ROSS 3E 3 3 3 3 3 3 3 3 3 5 4 5 8 5 8 5 8 5	L12417- 27-JUL- KENDALI IN HOUS 14A-WIN WINNIPE WQ-106 * 05-0022	2 -95 -95 -95 -95 	L12417- 27-JUL- KENDALM IN HOUS 15A01-4 WINNIPF WQ-106 * 05-0022	-3 -95 -35 -35 -35 -35 -35 -35 -35 -35 -35 -3	L12417- 27-JUL- KENDALI IN HOUS 15A-WIN WINNIPE WQ-106	4 95 5, ROSS 5E SAUKEE GRANT	L12417-5 27-JUL-95 HEATHER, J IN HOUSE 13T-SGR SUGAR RIVE WQ-106 GRA *	ASON R NT	L12417- 27-JUL- HEATHER JASON IN HOUSE 13D-SGR SUGAR RIVER WQ-106 GRANT	
remeter	Unite	Inite	Result	P D T.	Result	RDT	Pegult	PDT.	Requir	PDT.	Depuir D	n t.	Regult P.D.L.	
		414 U	neaut	<u> </u>		****	REQUEL	54 + 34 + 53 +	47.74 54 54 54 54 54		NODUAL R.	. لند و م <u>د</u>	ROBULY R.D. D.	
ARSENIC	mg/L	mg/L	1 *	<.005	*	<.005	*.	<.005	*	<.005	*		*	
LADMIUM	mg/L	mg/L	*	< 005	*	<.0005	*	<.0005	- -	<.0005		0.05	* - 005	
ANTIMONY	mg/ D	mg/ D	*		*	1.005	* .	4.005		4.003	*		*	
BERYLLIUM			*		*		*		*		••••••••••		*	
COPPER	mg/L	mg/L	*		*		★ 10		*		0.00400 «.	0025	* <.0025	
SELENIUM	mg/L	mg/L	* .	<.010	*	<.010	*	<.010	*	<.010	•		💌 e 👘 aparpeter	
THALLIUM					* .		*		*		•		*	
1550 T184	ma /T	ma /t	•	- 1	•	- 1		. 1	*	. 1	÷.		•	
CHROMUM	mg/L	mor/L		<.1 <.01	*	< .01	*	<.1 <.01	*	<.01	*			
COPPER			*		* .		*		` * ```	~	*			
IRON			*		*		*		*		*		*	
NICKEL			* ¹		*		*		*.		*		•	•
SILVER			· *		*		*		. *		*		*	
SODIUM		/-	*		* *		*		*		•		· • · · · · · · · · · · · · · · · · · ·	
ZINC UARDNESS	mg/L	mg/L	*		*		-		*		∴* <. +	025	0.0360 <.025	
MANGANESE			*		*		*		*				*	
HARDNESS, TOTAL	mg/L	mg/L	12.7	<1.35	13.3	<1.35	13.1	<1.35	13.3	<1.35	17.1 <1	.35	*	
CALCIUM HARDNESS			*		* 19		*		*		1. *		*	
ALUMINUM			* .		*		e 🔹 👘		*		* .		. • Constant of the	1. A
CALCIUM			* .		★ 1		* 1		*		ta ≜ a generation de la C		•	
MAGNESIUM			*		*		*				*		*	
PUTADSTUM MOLVEDENIM					· •		*		*		•		1	
BISMITH					-				1		*		*	
COBALT	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	a the second second	*		*		*		.*		*		*	
STRONTIUM			* :		*		*		*		•		🖕 na star i sta	
VANADIUM			•		*		*		*		*	÷	+	· ·
TITANIUM			*		*		*		•		• • • • • • • • • • • • • • • • • • •		*	
TIN			*		* *		*		*		*		*	
~~ * * * * * * *														
CHROWITIM					*		* -		*		*		* .	
COPPER			*		*		*				• · · ·		•	
IRON			*		*		·-		*		₩			
NICKEL			·* ·		*		*		· •		* *		The second second	
SILVER			* ¹ - 4		·*		*		🖕 👘 🖓		*	.~~	s 🚅 de la constante de la constan	
SODIUM			*		* É		*		*		•			
and and build affe														

ng/L = milligrams / lite < = less than -1-

N.H.D.E.S. Laboratory Services Analytical Results Authorized Signature:

	Sa Colla C: Der	ample Id: ect Date: Sampler lient Id: Locator: Site: scription Comments	L12417- 27-JUL- KENDALL IN HOUS 15B-WIN WINNIPE WQ-106	1 95 95 95 95 95 85 95 95 95 95 95 95 95 95 95 95 95 95 95	L12417-2 27-JUL-9 KENDALL, IN HOUSE 14A-WIN WINNIPES WQ-106 G	5 ROSS AUKEE RANT	L12417- 27-JUL- KENDALI IN HOUS 15A01-V WINNIPH WQ-106	-3 -95 SE VIN ESAUKEE GRANT	L12417 27-JUL KENDAL IN HOU 15A-WII WINNIP WQ-106	-4 -95 L, ROSS SE N ESAUKEE GRANT	L12417 27-JUL HEATHEI IN HOUS 13T-SGI SUGAR I WQ-106	-5 -95 R, JASON SE R RIVER GRANT	L12417- 27-JUL- HEATHER IN HOUS 13D-SGR SUGAR F WQ-106	6 95 JASON E IVER GRANT	· · · · · · · · ·
(a) A set of the se	6FA - D.	LIIGDIC #	03-0022						05-002	2993 	05-002	6909	05-0022		
arameter	Units	Units	Result	R.D.L.	Result	R.D.L.	Result	R.D.L.	Result	R.D.L.	Result	R.D.L.	Result	R.D.L.	
HARDNESS MANGANESE HARDNESS, TOTAL CALCIUM HARDNESS ALUMINUM CALCIUM			1 * * * * *				* * * * * * * * * * * * * * * * * * *		**************************************				*		:
MAGNESIUM Potassium Molybdenum Bismuth			* * *		* * *		* · · · · · · · · · · · · · · · · · · ·		* *		*	د ۲۰ محمد ۲۰ ۲۰ محمد ۲۰ ۲۰ محمد	*		
COBALT STRONTIUM VANADIUM TITANIUM TIN			* * *		★ ★ ★		´ ★ ` ★ ★		*		*		*	·	

900 7 WARD ()

1

mg/L = milligrams / liter < = less than -2-

			Aut	N.H.D.E.S. Labo Analytics horized Signature	ratory Services 1 Results
	Samg Collect Clie Ld Desc: Cd EPA - Bill	ple Id; Date: Sampler ent Id: Docator: Site: ription Domments Lable #	L12417-7 27-JUL-95 HEATHER, JASON IN HOUSE 15T-SGR SUGAR RIVER WQ-106 GRANT * 05-0022585	L12417-8 27-JUL-95 HEATHER, JASON IN HOUSE 15D-SGR SUGAR RIVER WQ-106 GRANT * 05-0022585	
arameter	Units	Units	Result R.D.L.	Result R.D.L.	
			· · · · · · · · · · · · · · · · · · ·		
ARSENIC				• • • • • • • • • • • • • • • • • • •	
CADMIUM			1. * 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	u ★ .]	
LEAD	mg/L	mg/L	* <.005	* <.005	
ANTIMONY			*	*	
COPPER	mg/L	mg/L	* <.0025	* <.0025	
SELENIUM			a 🗰 👘 🖉 👘 👘	*	
THALLIUM			*	*	
DEDTINA			•	•	
CHROMIUM			• •		
COPPER			 • International Action • Internation • Internatintereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	•	
IRON			*	*	
NICKEL			*	*	
SODIUM			•	*	
ZINC			• • • • • • • • • • •	•	
HARDNESS			1. * 1. 1. 1. 1. 1.	*	
MANGANESE		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	n ≢r a Christean an Sailtean Ta	•	
HARDNESS, TOTAL			*	*	
ALIMINUM			•	*	
CALCIUM			•	*	
MAGNESIUM			• • • • • • • • • • • • • • • • • • •	*	
POTASSIUM			*		
MULIBUSNUM RICHITTU			-	•	
COBALT			i .	*	
STRONTIUM		an de la composition de la composition Composition de la composition de la comp	•	• • · · · · · · · · · · · · · · · · · ·	
VANADIUM			*	2 * 1919	
TITANIUM			*	*	
		the second			
BARIUM			* *	*	
CHROMIUM			•	*	
COPPER			• •	*	
I KUN NTCKET.		a de la	· · · · · · · · · · · · · · · · · · ·		
SILVER			*	•	
CONTIN					
SUDIUM			• • • • • • • • • • • • • • • • • • •		

......

mg/L = milligrams / liter < = less than -3-

N.H.D.E.S. Laboratory Services Analytical Results Authorized Signature:

	Sé Colle Cl Des EPA - Bi	ample Id: ect Date: Sampler Lient Id: Locator: Site: scription Comments Lilable #	L12417- 27-JUL- HEATHER IN HOUS 15T-SGR SUGAR R WQ-106 * 05-0022	7 95 2, JASON E LIVER GRANT 585	L12417-8 27-JUL-95 HEATHER, JASON IN HOUSE 15D-SGR SUGAR RIVER WQ-106 GRANT * 05-0022585		
arameter		Units	Unite	Result	R.D.L.	Result R.D.L.	
ZINC HARDNESS MANGANESE HARDNESS, TOTAL CALCIUM HARDNESS ALUMINUM CALCIUM MAGNESIUM POTASSIUM MOLYBDENUM BISMUTH COBALT		mg/L	mg/L mg/L	* * 16.1 * * * *	<.025 <1.35	0.0320 <.025	
STRONTIUM VANADIUM TITANIUM TIN				*		* * *	

mg/L = milligrams / liter < = less than -4-

FY 1995 AMBIENT WATER QUALITY MONITORING PROGRAM FIELD NOTES FORM

DATE : 6 /26/ 95

SAMPLE ROUND #: 1 2 3

FIELD CREW: JACON HORTHEN, ROSS

ID# 225.6

CLASS: A B

RIVER NAME (s): 5.991

WEATHER: Clardy

	Stat	ion DO/Temp	Conductivity	pH	Parameters
H	5 11-591	· \$.71/19.5°	:09	7.1	Cu, Pb, Hard metal drim/tank 100'dainstream
-5	13-5gr	8.36 21.5	100	7.1	C. Pb, Fard - Cast & ductile ivon PIPE traversity
C	14.571	1.39/21.5	93	2.7	Cu, Pb, Hard Lunter Youd - looks like porrot imparishment
5	15591	8.10/21	78	6.9	C: Ph that anti-charter ater
30	1.100	9.54/21	91	7.1	Cu PD Haved - Metal debris in river
£3	175gr	8.08/21	99 6	.7	junk yourd surrow ding viver
ي	18sgr	8.63/21	ş3 7.	.0	Cu. FE, Hard - include iron pipe dainstream side
			L10285-	-1	mining acres water
		7.004	L10285 06/26	-2 10:55	L10285-7
		11 41	L10285 06726 1.10285	-3	06/26 11:50
			L1028	11 · 25 35-5	^{L10285-8} ^{06/26} 12:00

L10285-6 06/26 11:40

E.Coli X10-	18		
TKN-35	A1k- 58	A1-40	_
NH3-36	Turb-68	/cu-46	- -
NO3-37	TS- 70	Pb-48	
TP -39	TSS- 72	Zn-57	- -
/Hard-62	BOD5-31		

NHDES	State of New Hampshire Department of Environmental 6 Hazen Drive • PO Box 95 • Concord, NH (603) 271-3445/3446 Results of Laboratory An	Services 1 03302-0095 alysis
<pre>latrix : Aqueous Sample #: L10285-1 Category: IN HOUSE Collection Date: 06/26/95 og in Date : 06/27/95 Completion Date: 07/18/95</pre>	10:45	Site : Locator : 11-SGR Descript: Non-Point Source Acnt nbr: 05-04-04 Proj nbr: 05-0022560
Analyte COPPER JEAD HARDNESS	Results Units .0044 mg/L .006 mg/L 18 mg/L	RDL EPA Method .0025 200.9 .005 200.9 1.35 200.7
Authorize	d Signature:	y Hawarth
<pre>mg/L = Milligrams per Li > = Greater Than BDL = Below Detection L -pCi/L = pico Curies per L RDL = Reporting Detection </pre>	ter imit iter on Limit	ug/L = Micrograms per Liter <

- NHDI	State of New Department of Envir 6 Hazen Drive • PO Box 95 (603) 271-	Hampshire ronmental Services Concord. NH 03302-0095 3445/3446	
	Results of Labo	ratory Analysis	
trix : Aqueous mple #: L10285-2 ategory: IN HOUSE llection Date: 06, g in Date : 06, ompletion Date: 07,	/26/95 10:55 /27/95 /21/95	Site : Locator : 13-SGR Descript: Non-Point Source Acnt nbr: 05-04-04 Proj nbr: 05-0022560	
Analyte APPER AD ARDNESS	Results Uni .0025 mg/ <.005 mg/ 14.3 mg/	ts RDL EPA Method L .0025 200.9 L .005 200.9 L 1.35 200.7	
Lient's Comments: S	SUGAR RIVER	$\overline{\Omega}$	
		The Arman	
	E	raving Maworth	
Autl	orized Signature:	· · ·	
/L = Milligrams p = Greater Than DL = Below Detect	per Liter 1 tion Limit	ug/L = Micrograms per Lite < = Less Than ug/Kg = micrograms per Kil	er
Ci/L = pico Curies	per Liter	mg/Kg = Milligrams per Kild	ogram
- Reporting D			
e de la constante de la consta Este de la constante de la const Este de la constante de la const			
ander og som det en som en Here ander en som en			
	and the second secon		

NHDE	State Department 6 Hazen Drive • Po	c of New Hamps of Environme 0 Box 95 • Concord 603) 271-3445/344	shire ntal Services d, NH 03302-0095 6		
	Results o	f Laboratory	/ Analysis		
<pre>fatrix : Aqueous Jample #: L10285-3 Category: IN HOUSE Collection Date: 06/2 Log in Date : 06/2 Completion Date: 07/2</pre>	6/95 11:10 7/95 1/95		Site : Locator : Descript: Acnt nbr: Proj nbr:	14-SGR Non-Point S 05-04-04 05-0022560	ource
Analyte 	Results <.0025 <.005 14.1	Units mg/L mg/L mg/L	RDL EP .0025 2 .005 2 1.35 2	A Method 00.9 00.9 00.7	
Autho	rized Signatur	re:	ug/L = M	icrograms per	r Liter
<pre>> = Greater Than BDL = Below Detecti pCi/L = pico Curies p RDL = Reporting Det</pre>	on Limit er Liter ection Limit		< = L ug/Kg = m mg/Kg = M	ess Than icrograms per illigrams per	r Kilogram r Kilogram

NHDES	State of New Han Department of Environn 6 Hazen Drive • PO Box 95 • Conc (603) 271-3445/3	npshire nental Services ford, NH 03302-0095		
	Results of Laborato	ry Analysis		
rix : Aqueous mple #: L10285-4 ategory: IN HOUSE lection Date: 06/26/95 j in Date : 06/27/95 ompletion Date: 07/21/95	11:25	Site : Locator : Descript: Acnt nbr: Proj nbr:	15-SGR Non-Point So 05-04-04 05-0022560	urce
	Poculto Unito	ניס זווס	A Workod	
ARDNESS	<.0025 mg/L <.005 mg/L 12.8 mg/L	.0025 2 .005 2 1.35 2	00.9 00.9 00.7	
	DI			
lient's Comments: SUGAR	d Signature:	rry Han	iorA	
<pre>/L = Milligrams per Lit = Greater Than DL = Below Detection Lit Ci/L = pico Curies per Lit L = Reporting Detection</pre>	ter imit iter on Limit	ug/L = M < = L ug/Kg = m mg/Kg = M	icrograms per ess Than icrograms per illigrams per	Liter Kilogram Kilogram

NHDES	State of New Hampshir Department of Environmenta 6 Hazen Drive • PO Box 95 • Concord. N (603) 271-3445/3446	e 1 Services 1H 03302-0095		
	Results of Laboratory A	nalysis		
atrix : Aqueous Sample #: L10285-5 Category: IN HOUSE ollection Date: 06/26/99 Log in Date : 06/27/99 Completion Date: 07/21/99	5 11:30	Site : Locator : Descript: Acnt nbr: Proj nbr:	1-TRA Non-Point Sou 05-04-04 05-0022560	ırce
_Analyte	Results Units	RDL EP?	\ Method	
OPPER EAD HARDNESS	<.0025 mg/L <.005 mg/L 20.7 mg/L	.0025 20 .005 20 1.35 20	00.9 00.9 00.7	
Client's Comments: SUGAR Authorize	RIVER Har ed Signature:	ey Ha	work	
<pre>hg/L = Milligrams per L:</pre>	lter Limit Liter Lon Limit	ug/L = Mi < = Le ug/Kg = mi mg/Kg = Mi	crograms per ess Than crograms per lligrams per	Liter Kilogram Kilogram

NHDES	State Department of 6 Hazen Drive • PO (6	of New Hamp of Environme D Box 95 • Concor 503) 271-3445/344	shire ntal Services 1, NH 03302-0095 6		
	Results of	f Laboratory	' Analysis		
atrix : Aqueous sample #: L10285-6 Category: IN HOUSE Ollection Date: 06/26/95 og in Date : 06/27/95 Completion Date: 07/21/95	11:40		Site Locator Descrig Acnt ni Proj ni	: 16-SGR 5t: Non-Point 5r: 05-04-04 5r: 05-002256	Source
Analyte OPPER EAD HARDNESS	Results <.0025 <.005 12.1	Units mg/L mg/L mg/L	RDL .0025 .005 1.35	EPA Method 200.9 200.9 200.7	
Authorize	d Signatur	e:	rry J	Jawor H	2
ng/L = Milligrams per Li = Greater Than BDL = Below Detection L -DCi/L = pico Curies per L RDL = Reporting Detecti	ter imit iter on Limit		ug/L = < = ug/Kg = mg/Kg =	Micrograms Less Than micrograms Milligrams	per Liter per Kilogram per Kilogram

and and a second second

	and the second sec	New Hamoshire			
NHDES	Department of E 6 Hazen Drive • PO Bo (603)	Environmental S x 95 • Concord, NH 271-3445/3446	Services 03302-0095		
	Results of L	aboratory Ana	lysis		
<pre>trix : Aqueous ample #: L10285-7 ategory: IN HOUSE llection Date: 06/26/ g in Date : 06/27/ ompletion Date: 07/21/</pre>	95 11:50 95 95		Site : Locator : 1 Descript: M Acnt nbr: (Proj nbr: (17-SGR Ion-Point So 15-04-04 15-0022560	urce
Analyte ¬PPER AD ARDNESS	Results 1 .0042 1 <.005 1 12.3 1	Units R ng/L . ng/L . ng/L 1	DL EPA 0025 200 005 200 .35 200	Method).9).9).7	
lient's Comments: SUGA Authori	R RIVER	Harr	1 Har	vorR	
<pre>/L = Milligrams per = Greater Than 3DL = Below Detection Ci/L = pico Curies per)L = Reporting Detec</pre>	Liter Limit Liter tion Limit		ug/L = Mic < = Les ug/Kg = mic mg/Kg = Mil	rograms per s Than rograms per ligrams per	Liter Kilogram Kilogram

State of New Hampshire Department of Environmental Services 6 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446					
	Results of Laboratory A	nalysis			
<pre>latrix : Aqueous ample #: L10285-8 Category: IN HOUSE Collection Date: 06/26/9 og in Date : 06/27/9 Completion Date: 07/21/9</pre>	5 12:00 5 5	Site : Locator : 18-SGR Descript: Non-Point Acnt nbr: 05-04-04 Proj nbr: 05-002256	t Source 50		
Analyte COPPER EAD ARDNESS	Results Units <.0025 mg/L <.005 mg/L 10.6 mg/L	RDL BPA Method .0025 200.9 .005 200.9 1.35 200.7			
	Q1	1			
Authoriz	ed Signature:	, Maniorth			
-g/L = Milligrams per L = Greater Than DL = Below Detection pCi/L = pico Curies per DL = Reporting Detect	iter Limit Liter ion Limit	ug/L = Micrograms < = Less Than ug/Kg = micrograms mg/Kg = Milligrams	per Liter per Kilogram per Kilogram		

APPENDIX G

dina di s

REFERENCES

REFERENCES

- 1. The Clean Water Act of 1987, section 303 (d).
- 2. Total Maximum Daily Load Guidelines, State of New Hampshire Department of Environmental Services, Water Supply and Pollution Control Division, August 9, 1994.
- 3. Hydrologic Data for Gaged Watersheds of New Hampshire and Vermont, S. L. Dingman and G. K. Capsis, October 1981.
- 5. Characterization of Stormwater Runoff from Concord, New Hampshire, New Hampshire Department of Environmental Services, August 1979.
- 6. Durham Urban Runoff Program Summary Report, New Hampshire Department of Environmental Services, June 1983.
- 7. 1994 and 1995 sampling data from Manchester and Exeter, New Hampshire. Manchester sampling was done in conjunction with their CSO facility plan.
- U.S. EPA. 1985. U.S. Environmental Protection Agency. Rates, Constants, and Kinetics Formulation in Surface Water Quality Modeling, Second Edition, EPA/600/3-85/040, pages 90 - 205.
- 9. NHWSPCC. March 1993. Sugar River WLA Study. Staff Report.
- 10. Thomann, Robert V. And Mueller, John A., <u>Principles of Surface Water Quality</u> Modeling and Control, Harper and Row, New York, pg. 283-293.
- 11. USEPA. 1982. Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants Part I. EPA-600/6-82-004a.

APPENDIX H

. - ریلیف -

grantin L

and the second second

PERTINENT INFORMATION FROM THE SUGAR RIVER WLA STUDY SUNAPEE TO CLAREMONT, NH NHDES, 1993. The velocities and depths during the sampling periods are given in Table 3. The calculated velocities and depths at 7010 also are presented in Table 3.

TABLE 3 HYDRAULIC RELATIONSHIPS June 23-24, 1992

Reach	Flows (cfs)	Velocity (fps)	Depth (ft)
\mathbf{I}_{i}	33.95	0.62	1.38
II	36.95	0.63	1.44
III	56.05	0.91	1.15
IV	56.95	0.91	1.17
V	120.0	1.11	1.74
VI	121.0	0.91	2.32
VII	123.9	0.92	2.33

August 11-12, 1992

Reach	Flows (cfs)	Velocity (fps)	Depth (ft)
I	33.3	0.61	1.37
II	36.0	0.62	1.42
III	47.6	0.87	1.06
IV	48.4	0.87	1.07
V	78.0	0.99	1.38
VI	78.7	0.70	2.05
VII	80.2	0.71	2.06

-

7010 CONDITIONS

<u>Reach</u>	Flows (cfs)	Velocity (fps)	Depth (ft)
I	17.1	0.53	0.98
	20.6	0.55	1.07
III	25.9	0.74	0.76
IV	27.9	0.76	0.79
V	39.9	0.83	0.96
VI	41.1	0.47	1.71
VII	47.2	0.51	1.77

		REAERATI	ON RATES			
		June 23-	June 23-24, 1992			
Reach	Vel (fps)	Depth (ft)	<u>O-D</u>	<u> </u>	0	Ave Ka
I	0.62	1.38	6.3	4.3	8.7	6.4
II	0.63	1.44	6.0	4.0	8.1	6.0
III	0.91	1.15	10.1	8.4	15.7	11.4
IV	0.91	1.17	9.8	8.1	15.2	11.0
V	1.11	1.74	6.0	5.1	8.4	6.5
VI	0.91	2.32	3.5	2.6	4.3	3.5
VII	0.92	2.33	3.5	2.6	4.3	3.5

C. WAR

TABLE 4

August 11-12, 1992

Reach	Vel (fps)	Depth (ft)	<u>0-D</u>	<u>_</u>	0	Ave Ka
I	0.61	1.37	6.3	4.2	8.7	6.4
II	0.62	1.42	6.0	4.1	8.2	6.1
III	0.87	1.06	11.1	9.2	17.7	12.7
IV	0.87	1.07	11.1	9.1	17.4	12.5
	0.99	1.38	8.0	6.7	11.9	8.9
VI	0.70	2.05	3.7	2.5	4.5	3.6
VII	0.71	2.06	3.7	2.5	4.5	3.6

7010 Conditions

Reach	<u>Vel (fps)</u>	Depth (ft)	<u>0-D</u>	<u> </u>	0	Ave Ka
I	0.53	0.98	13.3	8.7	14.7	12.2
II	0.55	1.07	8.7	5.8	12.8	9.1
III	0.74	0.76	16.9	13.7	26.7	19.1
IV	0.76	0.79	16.1	13.2	27.9	19.1
V	0.83	0.96	12.6	10.4	20.7	14.6
VI	0.47	1.71	4.0	2.3	4.8	3.7
VII	0.51	1.77	3.9	2.3	4.8	3.7

O-D = O'Connor-Dobbins equation, Appendix F.

C = Churchill, et.al. equation, Appendix F.

O = Owens, et.al. equation, Appendix F.

		TABLE 12	•	
		INPUT SOURCE DATA		•
		June 23-24, 1992		
	Flow	D.O.	UCBOD	NBOD
Source	(cfs)	(mg/1 @25oC)	<u>(mg/1)</u>	(mg/1)
Sunapee WWTF	0.45	2.1	63	85
Trask Bk	1.20	6.74	1.68	0.73
Dorr WWTF	0.85	3.05	31	7.5
Long Pond Bk	2.15	6.98	1.91	0.61
So Branch	19.1	7.1	1.1	0.6
Newport WWTF	0.90	5.93	59	72
No Branch	72.0	7.30	2.3	0.56
Coy Paper TF	1.0	7.8	38	0.80
Claremont WWTF	2.9	6.18 ⁶	13	32

August 11-12, 1992

	Flow	D.O.	UCBOD	NBOD
Source	(cfs)	(mg/1 @25oC)	(mg/1)	<u>(mg/1)</u>
Sunapee WWTF	0.6	1.4	63	84
Trask Bk	0.7	6.90	1.9	0.7
Dorr WWTF	n an	- -	-	-
Long Pond Bk	2.7	6.6	1.8	0.65
So Branch	11.6	6.4	1.1	0.6
Newport WWTF	0.8	3.8	78	82
No Branch	20.1	6.9	2.3	0.6
Coy Paper TF	0.7	7.6	4.9	0.1
Claremont WWTF	2.0	6.0	31	52

DISSOLVED OXYGEN CONCENTRATIONS

It is important to note that the individual DO readings have been adjusted to negate the effects of temperature. That is, since the concentration of DO is dependent on the water temperature at the time of sampling, it is necessary to adjust the dissolved oxygen concentrations to a common temperature, in this case 25° C. The dissolved oxygen concentrations for each station were corrected to 25° C and are summarized in Table 13.

II-16

	TABLE 13							
	DO	CONCENTRATIO	NS $(mg/1 at 2$	5°)				
	June 23-	-24, 1992	August 1	1-12, 1992				
	% Sat	DO	% Sat	DO DO				
Station	0800	0800	0800	0800				
17A-Sgr	89	7.14	92	7.38				
Sunapee WWTF	27	2.17	17	1.36				
17-Sgr	82	6.58	84	6.74				
16-Sgr	89	7.14	92	7.38				
Trask Bk	84	6.74	86	6.90				
15-Sgr	86	6.90	90	7.22				
Dorr WWTF	38	3.05		-				
Long Pond Bk	87	6.98	81	6.50				
14-Sgr	77	6.18	81	6.50				
13-Sgr	91	7.30	91	7.30				
So Branch	88	7.06	79	6.34				
11-Sgr	93	7.46	90	7.22				
Newport WWTF	74	5.93	48	3.85				
9A-Sgr	85	6.82	76	6.10				
No Branch	91	7.30	84	6.74				
9-Sgr	96	7.70	84	6.74				
7-Sgr	96	7.70	94	7.54				
6-Sgr		7.14	71	5.70				
2-Sgr - The of GAN	91	7.30	91	7.30				
Coy Paper TF	97	7.78	93	7.46				
1A-Sgr	82	6.58	86	6.90				
Claremont WWTF	77	6.18	74	5.93				
1-Sgr	89	7.14	89	7.14				

A plot of the preceding DO data versus distance is shown in Appendix J. This DO curve is the standard against which the model DO concentration values will be compared.

MODEL PARAMETER SUMMARY

For the reader's convenience, Table 14 is a summary of all the parameters that were obtained during the June 23-24, 1992 stream survey.

			MODEL PAR	AMETER SUMMA	ARY - June	23-24, 1992	
in an an ann an Arland Ann an Arland Anna an Arland Anna Arland Anna Arland Anna Arland Anna Arland Anna Arland Anna Arland Anna Arland Anna Arland Anna Arland				RE/	VCH		
PARAMETER	<u> </u>		<u></u>	<u> </u>	<u> </u>	<u></u>	VII
STREAM		an San San San San San San San San San S					
Flow (cfs)	33.5	33.95	36.95	56.05	56.95	120.0	121.0
DO (mg/1)	7.5	6.95	7.0	7.4	7.3	7.3	7.0
UCBOD (mg/1)	2.3	2.0	2.4	1.6	2.8	3.0	2.9
NBOD (mg/1)	0.9	1.5	1.1	1.0	1.9	0.5	0.5
DISCHARGE	Sun	Dorr/LP	SB	Newport	NB	Coy	Claremont
Flow (cfs)	0.45	3.0	19.1	0.9	72.0	1.0	2.9
DO (mg/1)	2.1	3.1	7.1	5.93	7.3	7.8	6.18
UCBOD (mg/1)	63	31.0	1.1	59	2.3	38.0	13
NBOD (mg/1)	85	8.0	0.6	72	0.56	0.8	32
			N L				
K _a (1/day)	6.4	6.0	11.4	11.0	6.5	3.5	3.5
K _d (1/day)	-5.88	-0.87	-2.11	-5.02	-0.13	-20.0	-2.37
K_N (1/day)	-3.51	-6.24	-16.24	-2.63	-2.63	-2.63	-6.98
R (mg/1)	0.04	0.09	0.05	0.116	0.102	0.085	0.05
P (mg/1)	0	0	0	0	0	0	0
Velocity (fps)	0.62	0.63	0.91	0.91	1.11	0.91	0.92
T (0C)	25	25	25	25	25	25	25
Cs (mg/1)	8.16	8.16	8.16	8.16	8.16	8.16	8.16
$S_B (g/m^2/d)$	0	0	0	0	0	0	0
Starting Mile	25.72	23.28	20.26	18.68	17.25	1.79	1.55
Ending Mile	23.28	20.26	18.68	17.25	6.92	1.55	0

ž

TABLE 14

MODEL CALIBRATION

A computer run was made using the data in Table 14, and the output is provided in Appendix K. After adjustments were made to some rate values in order to calibrate the model to field data, a comparison of the computed DO values with the June 23-24, 1992 (0800) stream DO concentrations indicates that the computed DO values are within 10 percent of the field values (Appendix L). Table 15 shows the changes made in order to calibrate the model. Computer output of the calibrated model can be found in Appendix M.

		CALCULATED VS CALIBRATED RATES							
		<u> </u>			<u> </u>	<u> </u>	VI	VII	
Calculated	Ka	6.4	6.0	11.4	11.0	6.5	3.5	3.5	
	Kd	-5.88	-0.87	-2.11	-5.02	-0.13	-20.0	-2.37	
	Kn	-3.51	-6.24	-16.24	-2.63	-2.63	-2.63	-6.98	
Calibrated	Ka	8.0	7.5	9.0	7.0	4.0	2.0	10	
	Kđ	-5.88	-2.0	-2,11	-2.0	-0.13	-7.0	-2.4	
an an an an Arrainne. An ann an Arrainne	Kn	-2.0	-2.0	-2.0	-1.0	-1.5	-0.5	-2.1	

TABLE 15

MODEL VERIFICATION

In order to verify the Sugar River model, a second set of data at a different flow (Table 16) was input into the model to see if the field data results could, again, be predicted. The predicted results (Appendix M) are all within 10 percent of field values. The data in Table 16 includes the calibrated rates from Table 15. A plot of the field measurements and predicted values is given in Appendix L. Since the Sugar River model adequately predicts field DO concentrations with the second independent set of data, it is considered to be verified.

SENSITIVITY ANALYSIS

|

A sensitivity analysis is a process whereby parameters are changed from their original value and the effect of the change upon the model is evaluated. The purpose of a sensitivity analysis is to determine the effect parameter adjustments have on the model predictions. A sensitivity analysis is a recognition that there is some degree of uncertainty in determining model parameters.

The sensitivity of the calibrated model is examined relative to base

MUUEL PARAMETER SUMMARY - AUGUST 11-12, 19							
				RE/	АСН		
PARAMETER	<u> </u>	<u></u>		<u> </u>	<u> </u>	VI	VII
STREAM							
Flow (cfs)	32.7	33.3	36.0	47.6	48.4	78.0	78.7
00 (mg/1)	7.7	7.0	7.4	7.3	7.0	7.4	7.0
UCBOD (mg/1)	1.9	2.0	2.4	1.6	2.8	3.0	2.6
NBOD (mg/1)	0.7	1.5	1.1	1.0	1.9	0.5	0.5
			an an An Article Article Article			•	•
DISCHARGE	Sun	LPBk	SB	Newport	NB	Coy	Claremont
Flow (cfs)	0.6	2.7	11.6	0.8	20.1	0.7	2.0
DO (mg/1)	1.4	6.6	6.4	3.8	6.9	7.6	6.0
UCBOD (mg/1)	63	1.8	1.1	78	2.3	4.9	31
NBOD (mg/1)	84	0.65	0.6	82	0.6	0.1	52
K _a (1/day)	8.0	7.5	9.0	7.0	4.0	2.0	10.0
K _d (1/day)	-5.88	-2.0	-2.11	-2.0	-0.13	-7.0	-2.4
K _N (1/day)	-2.0	-2.0	-2.0	-1.0	-1.5	-0.5	-2.1
R (mg/1)	0.04	0.09	0.05	0.116	0.102	0.085	0.05
P (mg/1)	0	0	0	0	0	0	0
Velocity (fps)	0.61	0.62	0.87	0.87	0.99	0.70	0.71
T (⁰ C)	25	25	25	25	25	25	25
$C_S (mg/1)$	8.16	8.16	8.16	8.16	8.16	8.16	8.16
$S_B (g/m^2/d)$	0	0	0	0	0	0	0
Starting Mile	25.72	23.28	20.26	18.68	17.25	1.79	1.55
Ending Mile	23.28	20.26	18.68	17.25	6.92	1.55	0

TABLE 16 DDEL PARAMETER SUMMARY - August 11-12 1

1.5

1

data which, in this case, is the June 23-24, 1992 survey condition. The various parameters were adjusted around these data values. The variation for the reaction rates (K_a , K_d , K_n), loadings (UCBOD, NBOD), background dissolved oxygen, discharge dissolved oxygen, and the respiration rate were adjusted to +/-50% of their base values. Hydraulic parameters (flow, velocity) were varied +/-20%. The magnitude of the change was standardized within each group of parameters in order to facilitate the comparison of the sensitivity of similar parameters. The magnitude of the variation used in each group of parameters represents the relative confidence in the estimation of each parameter.

Sensitivity analyses were conducted on the June 1992 data for the Sugar River. Results show that the parameters most sensitive through the study area are; reaeration rate (K_a) , the upstream UCBOD concentration, background DO concentration, UCBOD decay rate (K_d) , and stream velocity.

Specifically, Table 17 lists the parameters which change the dissolved oxygen prediction by 0.5 mg DO/1 or greater.

TABLE 17

SENSITIVITY ANALYSIS

Reach	Sensitive Parameters
I	Reaeration rate
II	Reaeration rate
VI	Upstream DO

MODEL APPLICATION

In order to determine whether Class B standards would be met throughout the study area at 7010 river conditions, the following discharge condition summary was compiled for the Sugar River dischargers.

			TABLE	18		
		IN	PUT SOURC	E DATA		
	Flow	D.O.	BOD5	BOD5	NH3	NBOD
Source	<u>cfs</u>	<u>mg/1</u>	mg/1	lbs/d	mg/1	mg/1
Sunapee WWTF	1.0	1.4	30		21.8	99
Dorr WWTF	1.5	3.1	40	335	2.0	9
Newport WWTF	2.0	3.8	30		16.5	75
Coy Paper TF	1.4	6.0	40	300	0.1	0.5 🚽
Claremont WWTF	6.1	6.0	30		13.9	63

III-3

	an a			IABL	<u>E 19</u>	7010	
		an an the second se		REA	K SUMMART -	<u> 7010</u>	
PARAMETER	<u> </u>	<u> </u>	<u></u>	IV	<u></u>	<u></u>	VII
STREAM							
Flow (cfs)	16.1	19.05	20.6	25.9	27.9	39.9	41.29
DO (mg/1)	7.5	7.1	6.7	7.4	6.4	7.9	- 7.5 70
UCBOD (mg/l)	2.1	1.2	5.0	3.2	9.2	3.0	3.0 3.4
NBOD (mg/1)	0.8	2.1	2.0	1.3	4.7	1.1	1.0 13
DISCHARGE	Sunapee	Dorr	SB	Newport	NB	Coy	Claremont
Flow (cfs)	1.0	1.55	5.3	2.0	12.0	1.39	6.1
DO (mg/l)	1.4	3.1	6.3	3.85	6.8	6.0	6.0
UCBOD (mg/l)	73	117	1.1	120	2.3	40	48
NBOD (mg/1)	51	26	0.6	57.5	0.6	9	45.7
K_a (1/day)	15.3	11.4	15.1	12.2	9.0	2.1	10.6
K_d (1/day)	-5.88	-2.0	-2.11	-2.0	-0.13	-7.0	-2.4
K _N (1/day)	-2.0	-2.0	-2.0	-1.0	-1.5	-0.5	-2.1
R (mg/1)	0.04	0.09	0.05	0.116	0.102	0.085	0.05
P (mg/1)	0	0	0	0	0	0	0
Velocity (fps)	0.53	0.55	0.74	0.76	0.83	0.47	0.51
T (°C)	25	25	25	25	25	25	25
C _S (mg/1)	8.16	8.16	8.16	8.16	8.16	8.16	8.16
$S_B (g/m^2/d)$	0	0	0	0	0	0	0
Starting Mile	25.72	23.28	20.26	18.68	17.25	1.79	1.55
Ending Mile	23.28	20.26	18.68	17.25	6.92	1.55	0

111-5

TIME OF TRAVEL

The time required for a slug of water to travel from one point in a stream to another point downstream is known as the "time of travel" (TOT) and is calculated by the following formula:

TOT (days) = Length of segment (mi)/(16.36 X Velocity (fps))

The TOT for each reach at the time of the field survey in June 1992, during the August 1992 survey, and at 7Q10 are given below.

JUNE TIME OF TRAVEL					
Reach	Distance (Miles)	Velocity (fps)	TOT (Days)		
I	2.44	0.62	0.241		
II	3.02	0.63	0.293		
III	1.58	0.91	0.106		
IV	1.43	0.91	0.096		
٧	10.33	1.11	0.569		
VI	0.24	0.91	0.016		
VII	1.55	0.92	0.103		

AUGUST TIME OF TRAVEL

Reach	Distance (Miles)	Velocity (fps)	TOT (Days)
I.	2.44	0.61	0.244
II	3.02	0.62	0.298
III	1.58	0.87	0.111
IV	1.43	0.87	0.100
. V 1	10.33	0.99	0.638
VI	0.24	0.70	0.021
VII	1.55	0.71	0.133

7010 TIME OF TRAVEL

Reach	Distance (Miles)	Velocity (fps)	TOT (Days)
1	2.44	0.53	0.281
II	3.02	0.55	0.336
III	1.58	0.74	0.131
IV	1.43	0.76	0.115
V I	10.33	0.83	0.761
VI	0.24	0.47	0.031
VII	1.55	0.51	0.186

Reach VI mg DO/I

Reach VII ' mg D0 / I

Reach VI mg D0 / I

Reach VII mg DO / I

Reach VII mg DO / I

