Table of Contents

Chapter 1 Introduction

A. Purpose of Manual
- Stand-alone manual or supplement / inclusion to an existing manual

B. Project description
- New plant or upgraded components (list individual components if upgrade)
- Plant type
- Simplified schematic drawing showing plant layout

Chapter 2 Permits and Standards

A. Discharge permit requirements
- NPDES permit (effluent limitations table only)
- State groundwater discharge permit if applicable
- NPDES / State Water Discharge Permit Reporting of Non-Compliance / Spill Procedure
 (Reporting procedure can be found on website. Should be copied and inserted here)

B. Monitoring and Record Keeping
- For NPDES permits copy and insert pages 6 thru 9 of NPDES Part II STANDARD CONDITIONS (January 2007 or most recent version) of NPDES permit to highlight Part II.C Monitoring Requirements and Part II. D. Reporting Requirements (links can be found on page 7 of this checklist)

Chapter 3 Detailed Design Criteria

1. General description of influent wastewater
- Service area
- Average daily design flow
- Maximum daily flow
- Peak hour flow
- Peak instantaneous flow
- Domestic flow
- Industrial flow
- Commercial flow
- Infiltration / inflow
- Design BOD and TSS concentrations and loadings
- Septage volumes and loads
- Wastewater characterization (for nutrient removal systems)
- Number and location of pumping stations

2. Individual unit process design criteria and physical data
- Each unit process shall include the following:
 - Unit process title
 - Equipment manufacturer(s)
 - Number and type of units
 - Design criteria
 - Appropriate unit specific information as outlined below

A. Influent / intermediate / effluent pumping
- Wet well dimensions and volumes
- Level control system
- Type of pump, manufacturer & number of units
iv. Pump capacity GPM at TDH
v. Range of flow
vi. HP

B. Influent and effluent flow measurement
i. Type and manufacturer
ii. Size
iii. Flow range

C. Headworks screening / comminution
i. Type, manufacturer and number of units
ii. Screen size
iii. Capacity

D. Grit removal
i. Type, manufacturer & number of units
ii. Tank dimensions & volumes
iii. Type of pump, manufacturer and number of units
iv. Pump capacity GPM at TDH, range of flow

E. Septage handling
i. Type, manufacturer and number of units
ii. Tank dimensions & volumes in gallons
iii. Pump capacity GPM at TDH, range of flow
iv. Mixing devices
v. Aeration system

F. Primary clarification
i. Type, manufacturer & number of units
ii. Tank dimensions and volume in gallons
iii. Weir length, each
iv. Surface area, each
v. Detention times @ design ADF
vi. Surface overflow rate @ design ADF & peak hour flow
vii. Sludge pump capacity GPM at TDH, range of flow
viii. Scum pump capacity GPM at TDH, range of flow
ix. Sludge/scum flow measurement

G. Secondary or Advanced Treatment (activated sludge, IFAS, fixed film, RBC, lagoon, other)
i. Type of process & number of units
ii. Tank dimensions and volume in gallons
iii. Detention time @ design ADF
iv. BOD loading
v. Design MLSS & MLVSS concentration
vi. F/M ratio
vii. SRT
viii. Individual anaerobic / anoxic / aerobic compartment specifications
ix. Aeration requirements
x. Blowers - HP and capacity in SCFM
xi. Mechanical aerators - HP, oxygen transfer rate
 xii. Mechanical mixers - HP
xiii. Recycle pumping - type, capacity GPM at TDH, range of flow

H. Secondary clarification
i. Type, manufacturer & number of units
<table>
<thead>
<tr>
<th>I. Effluent filtration or other tertiary treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Type, manufacturer & number of units</td>
</tr>
<tr>
<td>ii. Design flow capacity, MGD</td>
</tr>
<tr>
<td>iii. Design solids loading per unit</td>
</tr>
<tr>
<td>iv. Design hydraulic loading per unit</td>
</tr>
<tr>
<td>v. Media surface area per unit</td>
</tr>
<tr>
<td>vi. Tank dimensions and volumes in gallons</td>
</tr>
<tr>
<td>vii. Backwash requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J. Disinfection - Chlorination / Dechlorination</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Number of tanks</td>
</tr>
<tr>
<td>ii. Tank dimensions and volumes in gallons</td>
</tr>
<tr>
<td>iii. Detention time @ peak hour flow</td>
</tr>
<tr>
<td>iv. Point of application chemical mixing type</td>
</tr>
<tr>
<td>v. Chemical dose & pacing</td>
</tr>
<tr>
<td>vi. Chemical storage tank dimensions, volumes and containment</td>
</tr>
<tr>
<td>vii. Chemical metering pumps</td>
</tr>
<tr>
<td>viii. Chlorine residual monitoring</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K. Disinfection - Ultra-Violet Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Type, manufacturer & number of units</td>
</tr>
<tr>
<td>ii. Number of bulbs / banks</td>
</tr>
<tr>
<td>iii. Number of channels</td>
</tr>
<tr>
<td>iv. Dose requirements</td>
</tr>
<tr>
<td>v. Dose pacing</td>
</tr>
<tr>
<td>vi. Cleaning system</td>
</tr>
<tr>
<td>vii. Transmittance / intensity monitoring</td>
</tr>
<tr>
<td>viii. Back-up disinfection alternative if UV system fails (also discuss in Chapter 4)</td>
</tr>
<tr>
<td>ix. Uninterruptable power supply</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L. Post aeration system</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Type & number of units</td>
</tr>
<tr>
<td>ii. Final effluent D.O. limits</td>
</tr>
<tr>
<td>iii. Tank dimensions and volume in gallons</td>
</tr>
<tr>
<td>iv. Air requirements</td>
</tr>
<tr>
<td>v. Number of diffusers</td>
</tr>
<tr>
<td>vi. Blowers - HP and capacity in SCFM</td>
</tr>
<tr>
<td>vii. D.O. monitoring and pacing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M. Effluent disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Surface water / groundwater</td>
</tr>
<tr>
<td>ii. Outfall location / GPS coordinates</td>
</tr>
<tr>
<td>iii. Dilution factor / receiving stream water quality classification</td>
</tr>
</tbody>
</table>
iv. 7Q10

v. Diffuser system

vi. Gravity / Pumping

vii. Drip dispersal

viii. Spray irrigation

ix. Rapid infiltration basins

N. Plant Water System

i. Type, manufacturer & number of units

ii. Capacity

O. Chemical feed systems for nutrient removal, solids handling, odor control, alkalinity, other

i. Chemical name and purpose

ii. Storage volumes and containment

iii. Metering pumps

iv. Number of units

v. Dose pacing

P. Odor control

i. Type, manufacturer & number of units

ii. Location of each unit

Q. Solids handling (storage, thickening, dewatering, stabilization)

i. Anticipated sludge quantities

ii. Hydraulic capacity per unit

iii. Solids loading per unit

iv. Performance criteria per unit

v. Sludge storage volumes

vi. Sludge conveyance mechanisms

vii. Sludge grinding mechanisms

viii. Sludge stabilization criteria

R. Generator / alternate power source

i. Type & manufacturer

ii. Fuel source and containment structure

iii. Fuel storage volume

iv. Fuel usage per hour

v. Run time on a full tank

vi. Fuel storage tank location(s)

vii. List of equipment on standby power

S. HVAC (Heating system, air handling & air conditioning units, supply & exhaust fans, unit heaters, etc.)

i. Fuel

ii. Capacities of each unit

iii. Air flow / exchanges per area

T. Fire protection and detection

i. Monitoring, alarms and suppression system

U. Other

Chapter 4 Detailed Unit Process Operations and Control

A. Plant layout schematic

B. Detailed process flow diagram
C. Hydraulic profile

D. For each unit process identified in Chapter 3, provide the following:
 i. Description and function of unit and relationship to adjacent or related units
 ii. Location of unit(s)
 iii. Determination of how many units to run
 iv. Normal startup and shut down procedures
 v. Normal operating conditions and control settings
 vi. Normally open/normally closed valves and gates
 vii. Unit by-pass procedure
 viii. Tank draining procedure
 a. Anti-flotation protection for empty tanks
 b. Winterization and cold weather operation
 ix. Unit controls
 a. H/O/A functions and switch locations
 b. SCADA controls
 c. Operator adjustable / non-adjustable set points
 b. Power supply
 x. Alternate or emergency operation for equipment malfunction, process upset and loss of power
 xi. Laboratory monitoring and sampling requirements and locations
 xii. Process control strategy
 xiii. Expected unit performance
 xiv. Operational problems and troubleshooting guides
 xv. High flow procedures
 xvi. Operable / non-operable on generator power
 xvii. Alarm conditions
 xviii. Unit specific safety concerns and procedures (confined space?)
 xix. Unit diagrams
 xx. Unit process related formulas and example calculations
 xxi. Recommended spare parts
 xxii. On-line monitoring systems
 xxiii. Digital pictures where appropriate (black & white or color)

Chapter 5 Maintenance
A. List of all manufacturer's O&M manuals supplied as part of this project

Chapter 6 Safety
A. Health hazards
B. Recommended immunizations
C. Sewer gas dangers & confined space entry procedure
D. General mechanical safety
E. General electrical safety
F. Fire extinguishers / usage, locations and maintenance
G. Emergency shower/eyewash stations
H. Recommended safety equipment
I. MSDS sheets for bulk chemicals used in plant
J. Chemical safety
K. Lockout / tag out procedures
L. Hot Work permit program
M. Electrical arc-flash program
N. AED supplied equipment / location if any
<table>
<thead>
<tr>
<th>Chapter 7 Alarm & Notification System</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General description</td>
</tr>
<tr>
<td>B. Complete list of alarm conditions</td>
</tr>
<tr>
<td>C. Transmission system</td>
</tr>
<tr>
<td>D. After hours alarm notification and response</td>
</tr>
<tr>
<td>E. Routine testing of alarm systems</td>
</tr>
<tr>
<td>F. Loss of notification system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8 Electrical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General description</td>
</tr>
<tr>
<td>B. Power distribution</td>
</tr>
<tr>
<td>C. Electrical system maintenance</td>
</tr>
<tr>
<td>D. Backup power system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9 SCADA System</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General SCADA system overview</td>
</tr>
<tr>
<td>B. Computer hardware</td>
</tr>
<tr>
<td>i. Type</td>
</tr>
<tr>
<td>ii. Number of computers and locations</td>
</tr>
<tr>
<td>iii. Dedicated for SCADA or multipurpose</td>
</tr>
<tr>
<td>iv. Laptops</td>
</tr>
<tr>
<td>v. Remote capabilities</td>
</tr>
<tr>
<td>vi. Maintenance and troubleshooting</td>
</tr>
<tr>
<td>vii. Support</td>
</tr>
<tr>
<td>C. SCADA software</td>
</tr>
<tr>
<td>D. Using the system</td>
</tr>
<tr>
<td>i. Components being monitored inclusive of pump stations</td>
</tr>
<tr>
<td>ii. Telemetry devices</td>
</tr>
<tr>
<td>iii. System capabilities</td>
</tr>
<tr>
<td>iv. General operating directions</td>
</tr>
<tr>
<td>v. Entering set points</td>
</tr>
<tr>
<td>vi. Alarms and alarm acknowledgement</td>
</tr>
<tr>
<td>vii. Data archiving</td>
</tr>
<tr>
<td>viii. Trending, graphing and report generation</td>
</tr>
<tr>
<td>ix. PLCs, remote terminal, local control panels, etc.</td>
</tr>
<tr>
<td>x. Troubleshooting guide</td>
</tr>
<tr>
<td>xi. Glossary</td>
</tr>
<tr>
<td>xii. Example graphics screens</td>
</tr>
<tr>
<td>xiii. System expandability</td>
</tr>
<tr>
<td>xiv. Startup procedures</td>
</tr>
<tr>
<td>xv. Back-up power supply</td>
</tr>
<tr>
<td>xvi. Loss of phone line / transmission line - discuss back-up capabilities</td>
</tr>
<tr>
<td>xvii. Data backup capabilities</td>
</tr>
<tr>
<td>xviii. Authorization required to make changes</td>
</tr>
<tr>
<td>E. SCADA system security and vulnerability</td>
</tr>
<tr>
<td>i. Password protection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10 Staffing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Engineer's recommended staffing plan with supporting documentation</td>
</tr>
<tr>
<td>B. Grade of plant as determined by DES and operator certification levels required</td>
</tr>
</tbody>
</table>
Chapter 11 Utilities

A. Contact information for all utility suppliers
B. Location of emergency shutoff valves for natural gas, propane and water supplies
C. Location of main disconnect for electrical feed
D. Location and size of propane tanks
E. Location and size of fuel oil storage tanks
F. Communications systems (telephone, cable, radio, etc.)
G. Location of potable water backflow devices

Chapter 12 Emergency Response

A. Site specific emergency response plan, **OR**
B. DES Emergency Response Planning Guide

Appendix

A. Major equipment suppliers and contact information
B. Valve and gate schedule
C. Sample forms
 i. Laboratory
 ii. Daily rounds
 III. Process control
 iv. Solids handling
 v. Maintenance
 vi. State Monthly Operations Report (MOR)
D. Other forms as required

DES webpages for more information

- **NPDES / State Water Discharge Permit Reporting of Non-Compliance / Spill Procedure:**
- **Standard Engineering Construction Phase Contract:**
- **Pump Station O&M Manual Review Checklist:**
- **ENV-Wq 700 STANDARDS OF DESIGN FOR CONSTRUCTION OF WWTFs:**
- **DES Generic Emergency Response Planning Guide:**
- **NPDES Permit Part II Standard Conditions, January 2007:**
- **WWTF O&M Manual Review Checklist:**
Directions for the Preparation of TREATMENT PLANT O&M Manuals

Any upgrades or new facility construction require that an Operation and Maintenance manual be provided as part of the project and approved by the New Hampshire Department of Environmental Services according to the following rules. This checklist is specific to wastewater treatment facilities only. There is a separate checklist for pump station work.

The New Hampshire Code of Administrative rules, Chapter Env-Wq 700 STANDARDS OF DESIGN AND CONSTRUCTION FOR SEWERAGE AND WASTEWATER TREATMENT FACILITIES, Part Env-Wq 708.08(a), requires that “Operation and Maintenance Manuals providing information and guidance for day-to-day operation of the WWTP shall be submitted within 60 days following substantial completion of the construction of the WWTP”. Part Env-Wq 708.08(b) lists, at a minimum, what should be included in an O&M manual. These rules apply to all projects, regardless of funding source.

The standard ENGINEERING CONSTRUCTION PHASE CONTRACT for Professional Services for Treatment Works, Part I.A.2.c, requires the “Preparation of an Operation and Maintenance Manual for approval by the DIVISION. After DIVISION approval, the Engineer agrees to supply five (5) sets of the completed manual, one (1) of which will be for the DIVISION”. More information can be found at www.des.nh.gov.

Manual Format

The attached Treatment Plant checklist provides a preferred format in terms of chapter arrangement and structure. Consultants are encouraged to follow this format as much as possible and are directed to contact DES to suggest an alternative format, if needed, to accommodate unique treatment plant requirements. Consultants should provide draft copies to the owner as well as DES for review.

The following items address the preferred format for both draft manuals and final copies:

- The manual should be assembled using a three ring binder for ease of updating
- Chapters should be separated with numbered tabs for ease of identification
- Double sided pages where feasible
- Manuals on CD will not be accepted for review.

The following conditions can be used to determine how extensive the manual must be:

- For new treatment plants, the manual must address all pertinent items in the checklist.
- For a significant upgrade involving an increase in capacity or multiple new major pieces of equipment, a complete new manual may be required. Contact DES Wastewater Operations for help in determining the extent of the manual.
- For minor upgrades consisting of a limited amount of equipment, such as a new sludge dewatering system, new disinfection, new screening, etc. that have a minimal effect on the overall plant, the manual may be developed as a stand-alone manual or may be incorporated as an addendum into the existing O&M manual. At a minimum, the manual or addendum must include the project description, design criteria of the upgraded equipment, system operation and control as it relates to the upgraded equipment, drawings or schematics, alarm and notification system, SCADA controls, safety as it relates to the upgraded equipment, references to manufacturers O&M manuals supplied as part of the project, and references to the existing O&M manual where appropriate.
- For any upgrades to a treatment plant that does not already have an approved O&M manual on file, regardless of the significance of the upgrades, a new O&M manual will need to be developed incorporating all of the pertinent elements listed in this checklist.
- In all cases, an up-to-date Emergency Response Plan, as outlined in Chapter 12 of the checklist, must be included in its entirety. If a site specific plan is not available, the generic DES Emergency Response Planning Guide shall be included.