Cyanobacterial Blooms in New Hampshire: An Environmental Trigger for ALS?

Tracie Caller, M.D.
Resident Physician, Neurology & Preventive Medicine
Dartmouth Hitchcock Medical Center

Cyanotoxins in New Hampshire Lakes - What You Need to Know
July 1, 2009 Workshop
NHDES, Concord NH
Recent media attention spawned after a recent NHDES workshop ...
Amyotrophic Lateral Sclerosis

- ALS affects upper and lower motor neurons.
 - Diagnosis is clinical; there is no test for the disease
- Symptoms: Progressive weakness, “wasting” of muscles, cramps, difficulty speaking/swallowing
- Median age is 55 at diagnosis.
- Average life expectancy 2-5 yrs
- 5-10% of cases are genetically inherited: SOD1 mutation
How Common is ALS?

To put into perspective: some U.S. statistics

<table>
<thead>
<tr>
<th></th>
<th>INCIDENCE (new)</th>
<th>PREVALENCE (all living)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>5,600 cases/year</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td>(~2 per 100,000)</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>similar to ALS</td>
<td>350,000</td>
</tr>
<tr>
<td></td>
<td>(1-2 per 100,000)</td>
<td></td>
</tr>
<tr>
<td>Brain Tumor (all)</td>
<td>41,000 cases/yr</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>(15 per 100,000)</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>600,000 new/yr</td>
<td>6,500,000</td>
</tr>
<tr>
<td>Heart attack</td>
<td>610,000 new/yr</td>
<td>7,900,000</td>
</tr>
<tr>
<td>Traumatic brain</td>
<td>1,400,000 new/yr</td>
<td>3,170,000 (disabled)</td>
</tr>
<tr>
<td>injury (all)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: Up to Date 2009; Courtney et al, Medical Clinics N Am 2009; Central Brain Tumor Registry of the United States (CBTRUS) 2004; AHA Heart Disease & Stroke Statistics 2009; Summers et al, J of Epidemiology 2009.
Clusters of ALS suggest an environmental trigger

- Documented “clusters” of disease
 - Guam, Kii peninsula
 - Veterans from 1st Gulf war

- Other arguments for environmental link:
 - Conjugal couples both developing ALS
 - Higher rates among certain populations (Italian soccer players, smokers)
 - Geographic disparities in disease incidence

- ALS seems to be more prevalent in a few areas within New England ... are there true “clusters?”
Why is it so hard to study environmental causes of ALS?

- **Difficult to obtain patient data:**
 - No national ALS registry! (unlike cancer)
 - No unified medical record system, ALS centers don’t collect the same data & can’t share data!
 - Mortality records may not document ALS
 - Errors in diagnosis

- **Logistics of analysis:**
 - Rare disease
 - Lag time: ALS is chronic and progresses for many years before it is diagnosed
 - Millions of potential environmental exposures; difficult to prove causality
 - Gene-environment interactions, other confounders
 - Disease may occur on a spectrum of other neurological conditions
Mapping ALS in New Hampshire

- Review of DHMC records, family interviews, and community databases
- Dwelling address mapped with ArcGIS Software.
- Adjusted for population density
- What we found:
 - Some areas appear to have higher rate of ALS (Lake Mascoma: estimated 10-25x expected)
 - Rate of ALS appears to double around lakes with past cyanobacteria blooms based on preliminary analysis.

<table>
<thead>
<tr>
<th>State</th>
<th>Total ALS Cases (10 yr)</th>
<th>ALS Rate w/in 1/2 mile buffer*</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>150</td>
<td>4.0</td>
<td>1.68</td>
<td>0.9 - 3.2</td>
</tr>
<tr>
<td>NH</td>
<td>245</td>
<td>4.4</td>
<td>2.32</td>
<td>1.42 - 3.80</td>
</tr>
<tr>
<td>ME</td>
<td>158</td>
<td>3.1</td>
<td>2.77</td>
<td>1.8 - 4.3</td>
</tr>
</tbody>
</table>

* approximate incidence per year per 100,000 population at risk
ALS in New England

- ALS seems to occur in “clusters”
- Are they true clusters or are they happening randomly?
 - Things in nature cluster by chance
 - Example: throw a handful of coins onto the floor

Did this happen by chance? Did an external force influence where the coins landed?

Unlikely result

More likely

- We are still testing our data to determine if the ALS “clusters” we found are true, statistically significant clusters.
ALS in New England

- One common theme – proximity of ALS cases to certain lakes
 - even after adjusting for population

- Is there a link to lake water or lake “culture”? Or something else common within the community?

- One possible link: neurotoxins made naturally by cyanobacteria.

- We are also investigating other environmental risk factors through a patient risk factor questionnaire.
Linking to the Guam hypothesis

- **ALS-PDC** complex highly prevalent in Guam (100X).
 - ↑↑ prevalence after WWII
 - Natives who leave Guam: risk ↓
 - Immigrants who take up Chamorro lifestyle: risk ↑
- Native Chamorro lifestyle seems to put people at risk.

- Cycad seeds are a staple of the indigenous diet.
 - Cyanobacteria live symbiotically inside Cycads.
 - Seeds are washed to remove toxins, then made into flour.
- **Flying foxes** also eat cycad seeds & are a delicacy.
 - Extinction of native flying foxes correlates with decrease in ALS-PDC.

Source: Cox et al, Proc Natl Acad Sci U S A. 2003
What we know about BMAA (Beta-Methylamino L-Alanine)

- **Non-protein amino acid** made by cyanobacteria; **small** molecule.
 - Stored in free & **protein bound** form.

- **BMAA is neurotoxic**
 - **Mechanism**: binds **glutamate** receptors, generating free radicals and oxidative damage.
 - BMAA targets motor neurons, but also astrocytes (the support cells).
 - Monkey/mouse models show acute neurotoxicity.

- **BMAA has been found in brain tissues** from ALS patients in Guam and Miami.

BMAA hypothesis

In Theory:
Guam: Ingestion of large amounts of BMAA through food chain → high risk of ALS
Elsewhere: chronic exposure to small amounts of BMAA + genetically susceptibility → increased risk of ALS??

Source: Banack et al, J of Ethnopharmacology 2005
Our Research at DHMC/UNH

We know cyanobacteria are prominent in New England so ...

- Can we identify BMAA in our local lakes?
- How might people acquire BMAA?
- Can we detect BMAA in our ALS patients?
- Can we show BMAA actually **causes** ALS?
- Is there something else necessary for ALS to occur (genetic susceptibility, another toxin?)

Our ultimate goal: could we prevent some cases of ALS by determining who is at risk & reducing environmental exposures?
Can we find BMAA in our lakes?

- We collected samples from several regional lakes in 2008, including Lake Mascoma
 - Of note: no fulminate blooms sampled
- We identified cyanobacteria species known to make BMAA.
 - BMAA undetectable in our Mascoma lake samples in 2008
- Low algal yield? (rainy summer & few blooms)
- Fluctuating levels of toxins?
- Sampling methods inadequate?
- Insensitivity of currently available tests for BMAA?
How might people be exposed to BMAA?

- Direct ingestion of water containing a bloom, or use of lake water for drinking.
 - Some residents on lakes DO use lake water for drinking.
- Consumption of fish/shellfish.
 - Data from Miami: BMAA found in high levels in some shellfish, very low levels in fish; but not always present.
- Inhaling aerosols from water-related sports: sailing, boating, jet-skiing.
- Inhaling aerosols from watering lawns, irrigating; household activities (showering, saunas).
- Spirulina or Blue Green algae dietary supplements
 - Other labs have found microcystin, BMAA, and other toxins in these supplements.
 - BMAA found in hair samples of people taking spirulina supplements.

Source: Dr. Paul Cox, personal communication; Dr. Larry Brand, personal communication; CDC: http://www.cdc.gov/hab/cyanobacteria/facts.htm
In Summary: BMAA

1. Cyanobacteria are ubiquitous in New England lakes, rivers, ponds, & oceans
2. Cyanobacteria can make the neurotoxin BMAA.
 - We don’t know what causes the toxin to be produced or what causes the levels to vary in lake water
3. People could be exposed to BMAA multiple ways.
 - How much exposure is needed to cause disease?
4. BMAA is neurotoxic
 ... but we lack a chronic disease animal model
1. BMAA can accumulate in brain tissue....is it a coincidence or it actually causing ALS?
 - Brain tissues from DHMC are being analyzed, hair samples may help ascertain exposure or susceptibility.
2. A susceptibility or synergistic component is likely
 - Genetic vulnerability? Synergistic effect of multiple toxins?
In Summary: ALS in New England

- There appears to be higher rates of ALS near blooms, but spatial association does **NOT** prove causality!
 - Many environmental factors could be associated with ALS but may not cause ALS.
- The BMAA hypothesis is still a hypothesis.
 - **No proven connection** between cyanobacteria and ALS.
- Exposure to BMAA sufficient to cause disease would have to occur over years and genetic susceptibility probably plays a role.
Take-Home Messages

1. **There are no proven** lifestyle modifications that can reduce your risk of developing ALS in the US.

2. **Avoiding blooms** is a good idea because of other health hazards (not because of fear of ALS).
 - No need to move to a new house or otherwise change your lifestyle!
 - State advisories about blooms posted by NH DES have nothing to do with our preliminary research.

3. **Be kind** to your lakes!
 - Don’t dump anything into the lake that you wouldn’t want your family to drink (sewage, garbage, etc.)
 - Don’t drink untreated lake water!

4. **Support** ALS research
 - Help lobby for a national ALS registry
 - Learn more about ALS through www.als-mda.org and www.patientslikeme.com
Collaborators

The ALS Center at Dartmouth Hitchcock Medical Center
Elijah Stommel, MD, PhD
Tracie Caller, MD
James Doolin
Hanna Farrar
Katherine West
Andrea Ball
Jeffrey Cohen, MD
Brent Harris, MD, PhD

NH Department of Environmental Services
Jody Connor - Limnology center director
Sara Steiner - VLAP coordinator
Sonya Carlson
And many many more!

Dept of Zoology, University of New Hampshire
Jim Haney, PhD
Amanda Murby MS

State University of New York
Greg Boyer, PhD

The Institute for Ethnomedicine
Paul Cox, PhD
Sandra Banack, PhD
Holly Johnson, PhD

Dundee University, Scotland
Geoffrey Codd, PhD
James Metcalf, PhD