Cyanobacterial Blooms in New Hampshire: An Environmental Trigger for ALS?

Tracie Caller, M.D. Resident Physician, Neurology & Preventive Medicine Dartmouth Hitchcock Medical Center

Cyanotoxins in New Hampshire Lakes - What You Need to Know July 1, 2009 Workshop NHDES, Concord NH

Recent media attention spawned after a recent NHDES workshop

and the second second second second and an inclusion in the start of the last

ECONOM

HOME RADI

VALLEY NEWS

First Gitmo

Detainee Now in U.S.

Federal Trial Darm N.Y.

On Enduring they

Windsor Bridge

Raises Concerns

Disease Cluster Found POLITICS

EPA Didn't Know Anybody Was Still Drinking Water

POLITICS

26. 2006 | ISSUE 42-17

WASHINGTON, DC-Environmental Protection Agency Administrator Stephen Johnson apologized during a press conference Tuesday for what critics called "flagrant oversight and neglect" in monitoring ground- and tap-water quality across the United States, claiming that his department was unaware that citizens were still consuming it. "I can honestly say we had no idea that anyone used faucet water anymore," Johnson said. "Bottled water, sure-I have some here on the lectern. But if there really are people out there still drinking tap water, all I can say is you're better off not knowing what's in there " Johnson added that official EPA policy is that Americans should stick to sports drinks

ARTICLE TOOLS				
38	DIGG			
f	FACEBOOK			
១	STUMBLEUPON			
Ł	TWITTER			
÷	REDDIT			

SCI/TECH

Amyotrophic Lateral Sclerosis

ALS affects upper and lower motor neurons.

- Diagnosis is clinical; there is no test for the disease
- Symptoms: Progressive weakness, "wasting" of muscles, cramps, difficulty speaking/swallowing
- Median age is 55 at diagnosis.
- Average life expectancy 2-5 yrs
- 5-10% of cases are genetically inherited: SOD1 mutation

How Common is ALS?

To put into perspective: some U.S. statistics

	INCIDENCE (new)	PREVALENCE (all living)
ALS	5,600 cases/year (~ <i>2 per 100,000</i>)	30,000
MS	similar to ALS (1-2 per 100,000)	350,000
Brain Tumor (all)	41,000 cases/yr (<i>15 per 100,000</i>)	?
Stroke	600,000 new/yr	6,500,000
Heart attack	610,000 new/yr	7,900,000
Traumatic brain injury (all)	1,400,000 new/yr	3,170,000 (disabled)

Sources: Up to Date 2009; Courtney et al, Medical Clinics N Am 2009; Central Brain Tumor Registry of the United States (CBTRUS) 2004; AHA Heart Disease & Stroke Statistics 2009; Summers et al, J of Epidemiology 2009.

Clusters of ALS suggest an environmental trigger

Documented "clusters" of disease

- Guam, Kii peninsula
- Veterans from 1st Gulf war
- Other arguments for environmental link:
 - Conjugal couples both developing ALS
 - Higher rates among certain populations (Italian soccer players, smokers)
 - Geographic disparities in disease incidence

ALS seems to be more prevalent in a few areas within New England ... are there true "clusters?"

Why is it so hard to study environmental causes of ALS?

Difficult to obtain patient data:

- No national ALS registry! (unlike cancer)
- No unified medical record system, ALS centers don't collect the same data & can't share data!
- Mortality records may not document ALS
- Errors in diagnosis

Logistics of analysis:

- Rare disease
- Lag time: ALS is chronic and progresses for many years before it is diagnosed
- Millions of potential environmental exposures; difficult to prove causality
- Gene-environment interactions, other confounders
- Disease may occur on a spectrum of other neurological conditions

Mapping ALS in New Hampshire

- Review of DHMC records, family interviews, and community databases
- Dwelling address mapped with ArcGIS Software.
- Adjusted for population density
- What we found:
 - Some areas appear to have higher rate of ALS (Lake Mascoma: estimated 10-25x expected)
 - Rate of ALS appears to double around lakes with past cyanobacteria blooms based on preliminary analysis.

State	Total ALS Cases (10 yr)	ALS Rate w/in 1/2 mile buffer*	RR	95% CI
VT	150	4.0	1.68	0.9 - 3.2
NH	245	4.4	2.32	1.42 - 3.80
ME	158	3.1	2.77	1.8-4.3

* approximate incidence per year per 100,000 population at risk

ALS in New England

ALS seems to occur in "clusters"
 Are they true clusters or are they happening randomly?

Things in nature cluster by chance

Example: throw a handful of coins onto the floor

Unlikely result

More likely

Did this happen by chance?

Did an external force influence where the coins landed?

 We are still testing our data to determine if the ALS "clusters" we found are true, statistically significant clusters.

ALS in New England

 One common theme – proximity of ALS cases to certain lakes

even after adjusting for population

- Is there a link to lake water or lake "culture"? Or something else common within the community?
- One possible link: neurotoxins made naturally by cyanobacteria.

 We are also investigating other environmental risk factors through a patient risk factor questionnaire.

Linking to the Guam hypothesis

 ALS-PDC complex highly prevalent in Guam (100X).

- ↑↑ prevalence after WWH
- Natives who leave Guam: risk ↓
- Immigrants who take up Chamorro lifestyle: risk ↑
- Native Chamorro lifestyle seems to put people at risk.
- Cycad seeds are a staple of the indigenous diet.
 - Cyanobacteria live symbiotically inside Cycads.
 - Seeds are washed to remove toxins, then made into flour.
- Flying foxes also eat cycad seeds & are a delicacy.
 - Extinction of native flying foxes correlates with decrease in ALS-PDC.

Source: Cox et al, Proc Natl Acad Sci U S A. 2003

What we know about BMAA (Beta-Methylamino L-Alanine)

 Non-protein amino acid made by cyanobacteria; small molecule.

Stored in free & protein bound form.

BMAA is neurotoxic

- Mechanism: binds glutamate receptors, generating free radicals and oxidative damage.
- BMAA targets motor neurons, but also astrocytes (the support cells).
- Monkey/mouse models show acute neurotoxicity.
- BMAA has been found in brain tissues from ALS patients in Guam and Miami.

Sources: Loebner D Neurobiol Dis. 2007, Rao SD Exp Neurol. 2006; Murch et al Acta Neurol Scand 2004; Pablo et al Acta Neurol Scand 2009.

BMAA hypothesis

In Theory:

Guam: Ingestion of large amounts of BMAA through food chain \rightarrow high risk of ALS

Elsewhere: chronic exposure to small amounts of BMAA + genetically susceptibility → increased risk of ALS??

Source: Banack et al, J of Ethnopharmacology 2005

Our Research at DHMC/UNH

We know cyanobacteria are prominent in New England so ...

- Can we identify BMAA in our local lakes?
- How might people acquire BMAA?
- Can we detect BMAA in our ALS patients?
- Can we show BMMA actually causes ALS?
- Is there something else necessary for ALS to occur (genetic susceptibility, another toxin?)

Our ultimate goal: could we prevent some cases of ALS by determining who is at risk & reducing environmental exposures?

Can we find BMAA in our lakes?

 We collected samples from several regional lakes in 2008, including Lake Mascoma

 Of note: no fulminate blooms sampled

 We identified cyanobacteria species known to make BMAA.
 BMAA undetectable in our Mascoma lake samples in 2008

- Low algal yield?
 - (rainy summer & few blooms)
- Fluctuating levels of toxins?
- Sampling methods inadequate?
- Insensitivity of currently available tests for BMAA?

How might people be exposed to BMAA?

- Direct ingestion of water containing a bloom, or use of lake water for drinking.
 - Some residents on lakes DO use lake water for drinking
- Consumption of fish/shellfish.
 - Data from Miami: BMAA found in high levels in some shellfish, very low levels in fish; but not always present.
- Inhaling aerosols from water-related sports: sailing, boating, jet-skiing.
- Inhaling aerosols from watering lawns, irrigating; household activities (showering, saunas).
- Spirulina or Blue Green algae dietary supplements
 - Other labs have found microcystin, BMAA, and other toxins in these supplements
 - BMAA found in hair samples of people taking spirulina supplements.

Source: Dr. Paul Cox, personal communication; Dr. Larry Brand, personal communication; CDC: http://www.cdc.gov/hab/cyanobacteria/facts.htm

In Summary: BMAA

- Cyanobacteria are ubiquitous in New England lakes, rivers, ponds, & oceans
- Cyanobacteria can make the neurotoxin BMAA.
 We don't know what causes the toxin to be produced or what causes the levels to vary in lake water
- 3. People could be exposed to BMAA multiple ways. - How much exposure is needed to cause disease?
- 4. BMAA is neurotoxic

... but we lack a chronic disease animal model

- BMAA can accumulate in brain tissue....is it a coincidence or it actually causing ALS?

 Brain tissues from DHMC are being analyzed, hair samples may help ascertain exposure or susceptibility.
- 2. A susceptibility or synergistic component is likely - Genetic vulnerability? Synergistic effect of multiple toxins?

In Summary: ALS in New England

- There appears to be higher rates of ALS near blooms, but spatial association does NOT prove causality!
 - Many environmental factors could be associated with ALS but may not cause ALS.
- The BMAA hypothesis is still a hypothesis.
 - No proven connection between cyanobacteria and ALS.
- Exposure to BMAA sufficient to cause disease would have to occur over years and genetic susceptibility probably plays a role.

Take-Home Messages

- 1. There are **no proven** lifestyle modifications that can reduce your risk of developing ALS in the US
- 2. Avoiding blooms is a good idea because of other health hazards (not because of fear of ALS).
 - No need to move to a new house or otherwise change your lifestyle!
 - State advisories about blooms posted by NH DES have nothing to do with our preliminary research.

3. Be kind to your lakes!

- Don't dump anything into the lake that you wouldn't want your family to drink (sewage, garbage, etc.)
- Don't drink untreated lake water!
- 4. Support ALS research
 - Help lobby for a national ALS registry
 - Learn more about ALS through <u>www.als-mda.org</u> and <u>www.patientslikeme.com</u>

Collaborators

The ALS Center at Dartmouth Hitchcock Medical Center

Elijah Stommel, MD, PhD Tracie Caller, MD James Doolin Hanna Farrar Katherine West Andrea Ball Jeffrey Cohen, MD Brent Harris, MD, PhD

NH Department of Environmental Services

Jody Connor - Limnology center director Sara Steiner - VLAP coordinator Sonya Carlson And many many more! Dept of Zoology, University of New Hampshire Jim Haney, PhD Amanda Murby MS

State University of New York Greg Boyer, PhD

The Institute for Ethnomedicine Paul Cox, PhD Sandra Banack, PhD Holly Johnson, PhD

Dundee University, Scotland Geoffrey Codd, PhD James Metcalf, PhD